Spaces:
Running
Running
File size: 15,072 Bytes
e085437 2548c76 20946b6 4a51867 e085437 2548c76 955d374 2548c76 e085437 4a51867 50ea5b6 64b6831 06428dd e085437 20946b6 4a51867 c410dc1 4a51867 c410dc1 4a51867 c410dc1 4a51867 e085437 2d8ed34 4a51867 2d8ed34 4a51867 2d8ed34 4a51867 2d8ed34 4a51867 60b0e86 4a51867 50ea5b6 60b0e86 50ea5b6 4a51867 50ea5b6 4a51867 e085437 20946b6 4a51867 0da02e5 c410dc1 0da02e5 c410dc1 0da02e5 64b6831 0da02e5 4a51867 0da02e5 4a51867 64b6831 4a51867 60b0e86 4a51867 062afec 4a51867 0da02e5 06428dd 0da02e5 4a51867 0da02e5 4a51867 60b0e86 4a51867 60b0e86 4a51867 60b0e86 4a51867 60b0e86 4a51867 64b6831 4a51867 64b6831 4a51867 60b0e86 4a51867 60b0e86 4a51867 60b0e86 4a51867 60bbe72 4a51867 60bbe72 4a51867 60b0e86 4a51867 60b0e86 4a51867 64b6831 4a51867 64b6831 4a51867 8da1516 4a51867 edbdd3f 64b6831 4a51867 60b0e86 4a51867 60b0e86 8da1516 4a51867 50ea5b6 4a51867 50ea5b6 20946b6 64b6831 955d374 64b6831 60b0e86 4a51867 64b6831 e085437 4a51867 60b0e86 4a51867 60b0e86 4a51867 60b0e86 4a51867 e085437 60b0e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import gc
import os
import warnings
from types import SimpleNamespace
import pandas as pd
import numpy as np
import streamlit as st
import torch
# Local imports
from generation_utils import (
ReactionT5Dataset,
decode_output,
save_multiple_predictions,
)
from models import ReactionT5Yield2
from torch.utils.data import DataLoader
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import seed_everything
warnings.filterwarnings("ignore")
# ------------------------------
# Page setup
# ------------------------------
st.set_page_config(
page_title="ReactionT5",
page_icon=None,
layout="wide",
)
st.title("ReactionT5")
st.caption(
"Predict reaction products, reactants, or yields from your inputs using a pretrained ReactionT5 model."
)
# ------------------------------
# Sidebar: configuration
# ------------------------------
with st.sidebar:
st.header("Configuration")
task = st.selectbox(
"Task",
options=["product prediction", "retrosynthesis prediction", "yield prediction"],
index=0,
help="Choose the task to run.",
)
with st.expander("How to format your CSV", expanded=False):
if task == "product prediction":
st.markdown(
"""
- `REACTANT` column is required.
- Optional columns: `REAGENT`, `SOLVENT`, `CATALYST`.
- If a field lists multiple compounds, separate them with a dot (`.`).
- For details, download **demo_reaction_data.csv** and check its contents.
"""
)
elif task == "retrosynthesis prediction":
st.markdown(
"""
- `PRODUCT` column is required.
- No optional columns are used.
- If a field lists multiple compounds, separate them with a dot (`.`).
- For details, download **demo_retro_data.csv** and check its contents.
"""
)
else: # yield prediction
st.markdown(
"""
- `REACTANT` and `PRODUCT` columns are required.
- Optional columns: `REAGENT`, `SOLVENT`, `CATALYST`.
- If a field lists multiple compounds, separate them with a dot (`.`).
- For details, download **demo_yield_data.csv** and check its contents.
- Output contains predicted **reaction yield** on a **0–100% scale**.
"""
)
# ------------------------------
# Demo data download
# ------------------------------
import io
@st.cache_data(show_spinner=False)
def parse_csv_from_bytes(file_bytes: bytes) -> pd.DataFrame:
# If your files are always UTF-8, this is fine:
return pd.read_csv(io.BytesIO(file_bytes))
# If you prefer explicit text decoding:
# return pd.read_csv(io.StringIO(file_bytes.decode("utf-8")))
@st.cache_data(show_spinner=False)
def load_demo_csv_as_bytes() -> bytes:
demo_df = pd.read_csv("data/demo_reaction_data.csv")
return demo_df.to_csv(index=False).encode("utf-8")
st.download_button(
label="Download demo_reaction_data.csv",
data=load_demo_csv_as_bytes(),
file_name="demo_reaction_data.csv",
mime="text/csv",
use_container_width=True,
)
st.divider()
# ------------------------------
# Sidebar: configuration
# ------------------------------
with st.sidebar:
st.header("Configuration")
# Model options tied to task
if task == "product prediction":
model_options = [
"sagawa/ReactionT5v2-forward",
"sagawa/ReactionT5v2-forward-USPTO_MIT",
]
model_help = "Recommended models for product prediction."
input_max_length_default = 400
output_max_length_default = 300
from task_forward.train import preprocess_df
elif task == "retrosynthesis prediction":
model_options = [
"sagawa/ReactionT5v2-retrosynthesis",
"sagawa/ReactionT5v2-retrosynthesis-USPTO_50k",
]
model_help = "Recommended models for retrosynthesis prediction."
input_max_length_default = 100
output_max_length_default = 400
from task_retrosynthesis.train import preprocess_df
else: # yield prediction
model_options = ["sagawa/ReactionT5v2-yield"] # default as requested
model_help = "Default model for yield prediction."
input_max_length_default = 400
from task_yield.train import preprocess_df
model_name_or_path = st.selectbox(
"Model",
options=model_options,
index=0,
help=model_help,
)
if task != "yield prediction":
num_beams = st.slider(
"Beam size",
min_value=1,
max_value=10,
value=5,
step=1,
help="Number of beams for beam search.",
)
seed = st.number_input(
"Random seed",
min_value=0,
max_value=2**32 - 1,
value=42,
step=1,
help="Seed for reproducibility.",
)
with st.expander("Advanced generation", expanded=False):
input_max_length = st.number_input(
"Input max length",
min_value=8,
max_value=1024,
value=input_max_length_default,
step=8,
)
if task != "yield prediction":
output_max_length = st.number_input(
"Output max length",
min_value=8,
max_value=1024,
value=output_max_length_default,
step=8,
)
output_min_length = st.number_input(
"Output min length",
min_value=-1,
max_value=1024,
value=-1,
step=1,
help="Use -1 to let the model decide.",
)
batch_size = st.number_input(
"Batch size", min_value=1, max_value=16, value=1, step=1
)
num_workers = st.number_input(
"DataLoader workers",
min_value=0,
max_value=8,
value=4,
step=1,
help="Set to 0 if multiprocessing is restricted in your environment.",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.caption(f"Detected device: **{device.type.upper()}**")
# ------------------------------
# Cached loaders
# ------------------------------
@st.cache_resource(show_spinner=False)
def load_tokenizer(model_ref: str):
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
return AutoTokenizer.from_pretrained(resolved, return_tensors="pt")
@st.cache_resource(show_spinner=True)
def load_model(model_ref: str, device_str: str, task: str):
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
if task != "yield prediction":
model = AutoModelForSeq2SeqLM.from_pretrained(resolved)
else:
model = ReactionT5Yield2.from_pretrained(resolved)
model.to(torch.device(device_str))
model.eval()
return model
@st.cache_data(show_spinner=False)
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
return df.to_csv(index=False).encode("utf-8")
# ------------------------------
# Main interaction
# ------------------------------
left, right = st.columns([1.4, 1.0], vertical_alignment="top")
with left:
with st.form("predict_form", clear_on_submit=False):
uploaded = st.file_uploader(
"Upload a CSV file with reactions",
type=["csv"],
accept_multiple_files=False,
help="Must contain a REACTANT column. Optional: REAGENT, SOLVENT, CATALYST.",
)
run = st.form_submit_button("Predict", use_container_width=True)
if uploaded is not None:
try:
file_bytes = uploaded.getvalue()
raw_df = parse_csv_from_bytes(file_bytes)
# raw_df = pd.read_csv(uploaded)
st.subheader("Input preview")
st.dataframe(raw_df.head(20), use_container_width=True)
except Exception as e:
st.error(f"Failed to read CSV: {e}")
with right:
st.subheader("Notes")
if task == "product prediction":
st.markdown(
f"""
- Approximate time: about **3 seconds per reaction** when `beam size = 5` (varies by hardware).
- Output contains predicted **sets of reactant SMILES** and their log-likelihoods, sorted by log-likelihood (index 0 is most probable).
"""
)
elif task == "retrosynthesis prediction":
st.markdown(
f"""
- Approximate time: about **5 seconds per reaction** when `beam size = 5` (varies by hardware).
- Output contains predicted **sets of reactant SMILES** and their log-likelihoods, sorted by log-likelihood (index 0 is most probable).
"""
)
else: # yield prediction
st.markdown(
f"""
- Approximate time: about **0.25 seconds per reaction** when `batch size = 1` (varies by hardware).
- Output contains predicted **reaction yield** on a **0–100% scale**.
"""
)
st.info(
"In this space, CPU is used for inference. So the speed is slower than using a GPU."
)
# ------------------------------
# Inference
# ------------------------------
if "results_df" not in st.session_state:
st.session_state["results_df"] = None
if "last_error" not in st.session_state:
st.session_state["last_error"] = None
if run:
if uploaded is None:
st.warning("Please upload a CSV file before running prediction.")
else:
# Build config object expected by your dataset/utils
CFG = SimpleNamespace(
task=task,
num_beams=int(num_beams) if task != "yield prediction" else None,
num_return_sequences=int(num_beams)
if task != "yield prediction"
else None, # tie to beams by default
model_name_or_path=model_name_or_path,
input_column="input",
input_max_length=int(input_max_length)
if task != "yield prediction"
else None,
output_max_length=int(output_max_length)
if task != "yield prediction"
else None,
output_min_length=int(output_min_length)
if task != "yield prediction"
else None,
seed=int(seed),
batch_size=int(batch_size),
debug=False
)
seed_everything(seed=CFG.seed)
# Load model & tokenizer
with st.status("Loading model and tokenizer...", expanded=False) as status:
try:
tokenizer = load_tokenizer(CFG.model_name_or_path)
CFG.tokenizer = tokenizer
model = load_model(CFG.model_name_or_path, device.type, task)
status.update(label="Model ready.", state="complete")
except Exception as e:
st.session_state["last_error"] = f"Failed to load model: {e}"
status.update(label="Model load failed.", state="error")
st.stop()
# Prepare data
file_bytes = uploaded.getvalue()
input_df = parse_csv_from_bytes(file_bytes)
if task != "yield prediction":
input_df = preprocess_df(input_df, drop_duplicates=False)
else:
input_df = preprocess_df(input_df, cfg=CFG,drop_duplicates=False)
# Dataset & loader
dataset = ReactionT5Dataset(CFG, input_df)
dataloader = DataLoader(
dataset,
batch_size=CFG.batch_size,
shuffle=False,
num_workers=int(num_workers),
pin_memory=(device.type == "cuda"),
drop_last=False,
)
if task == "yield prediction":
# Use custom inference function for yield prediction
prediction = []
total = len(dataloader)
progress = st.progress(0, text="Predicting yields...")
info_placeholder = st.empty()
for i, inputs in enumerate(dataloader, start=1):
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
y_preds = model(inputs)
prediction.extend(y_preds.to("cpu").numpy())
del y_preds
progress.progress(i / total, text=f"Predicting yields... {i}/{total}")
info_placeholder.caption(f"Processed batch {i} of {total}")
prediction = np.concatenate(prediction)
output_df = input_df.copy()
output_df["prediction"] = prediction
output_df["prediction"] = output_df["prediction"].clip(lower=0.0, upper=100.0)
st.session_state["results_df"] = output_df
st.success("Prediction complete.")
else:
# Generation loop with progress
all_sequences, all_scores = [], []
total = len(dataloader)
progress = st.progress(0, text="Generating predictions...")
info_placeholder = st.empty()
for i, inputs in enumerate(dataloader, start=1):
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model.generate(
**inputs,
min_length=CFG.output_min_length,
max_length=CFG.output_max_length,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
sequences, scores = decode_output(output, CFG)
all_sequences.extend(sequences)
if scores:
all_scores.extend(scores)
del output
if device.type == "cuda":
torch.cuda.empty_cache()
gc.collect()
progress.progress(i / total, text=f"Generating predictions... {i}/{total}")
info_placeholder.caption(f"Processed batch {i} of {total}")
progress.empty()
info_placeholder.empty()
# Save predictions
try:
output_df = save_multiple_predictions(
input_df, all_sequences, all_scores, CFG
)
st.session_state["results_df"] = output_df
st.success("Prediction complete.")
except Exception as e:
st.session_state["last_error"] = f"Failed to assemble output: {e}"
st.error(st.session_state["last_error"])
st.stop()
# ------------------------------
# Results
# ------------------------------
if st.session_state.get("results_df") is not None:
st.subheader("Results preview")
st.dataframe(st.session_state["results_df"].head(50), use_container_width=True)
st.download_button(
label="Download predictions as CSV",
data=df_to_csv_bytes(st.session_state["results_df"]),
file_name="output.csv",
mime="text/csv",
use_container_width=True,
)
if st.session_state.get("last_error"):
st.error(st.session_state["last_error"])
|