Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,289 +1,98 @@
|
|
1 |
-
# app.py
|
2 |
import gc
|
3 |
import os
|
4 |
import sys
|
5 |
import warnings
|
6 |
-
from typing import Optional, Tuple
|
7 |
|
8 |
import pandas as pd
|
9 |
import streamlit as st
|
10 |
import torch
|
11 |
from torch.utils.data import DataLoader
|
|
|
12 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
13 |
|
14 |
-
# Local imports
|
15 |
sys.path.append(
|
16 |
os.path.abspath(os.path.join(os.path.dirname(__file__), "task_forward"))
|
17 |
)
|
18 |
-
from generation_utils import
|
|
|
|
|
|
|
|
|
19 |
from train import preprocess_df
|
20 |
from utils import seed_everything
|
21 |
|
22 |
warnings.filterwarnings("ignore")
|
23 |
|
24 |
-
# -----------------------------
|
25 |
-
# Page / Theme / Global Styles
|
26 |
-
# -----------------------------
|
27 |
-
|
28 |
-
# Subtle modern styles (card-like blocks, nicer headers, compact tables)
|
29 |
-
st.markdown(
|
30 |
-
"""
|
31 |
-
<style>
|
32 |
-
/* Base */
|
33 |
-
.block-container {padding-top: 1.5rem; padding-bottom: 2rem;}
|
34 |
-
h1, h2, h3 { letter-spacing: .2px; }
|
35 |
-
.st-emotion-cache-1jicfl2 {padding: 1rem !important;} /* tabs pad (HF class may vary)*/
|
36 |
-
|
37 |
-
/* Card container */
|
38 |
-
.card {
|
39 |
-
border-radius: 18px;
|
40 |
-
padding: 1rem 1.2rem;
|
41 |
-
border: 1px solid rgba(127,127,127,0.15);
|
42 |
-
background: rgba(250,250,250,0.6);
|
43 |
-
backdrop-filter: blur(6px);
|
44 |
-
}
|
45 |
-
[data-baseweb="select"] div { border-radius: 12px !important; }
|
46 |
-
|
47 |
-
/* Buttons */
|
48 |
-
.stButton>button {
|
49 |
-
border-radius: 12px;
|
50 |
-
padding: .6rem 1rem;
|
51 |
-
font-weight: 600;
|
52 |
-
}
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
.
|
66 |
-
|
67 |
-
""
|
68 |
-
unsafe_allow_html=True,
|
69 |
)
|
70 |
|
71 |
-
# -----------------------------
|
72 |
-
# Header
|
73 |
-
# -----------------------------
|
74 |
-
col_l, col_r = st.columns([0.78, 0.22])
|
75 |
-
with col_l:
|
76 |
-
st.title("ReactionT5 • Task Forward")
|
77 |
-
st.markdown(
|
78 |
-
"""
|
79 |
-
Predict **reaction products** from inputs formatted as
|
80 |
-
`REACTANT:{reactants}REAGENT:{reagents}`
|
81 |
-
For multiple compounds: join with `"."` • If no reagent: use a single space `" "`.
|
82 |
-
"""
|
83 |
-
)
|
84 |
-
with col_r:
|
85 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
86 |
-
st.markdown("**Status**")
|
87 |
-
gpu = torch.cuda.is_available()
|
88 |
-
st.markdown(
|
89 |
-
f"""
|
90 |
-
<span class='badge'>Device: {"CUDA" if gpu else "CPU"}</span>
|
91 |
-
<span class='badge'>Transformers</span>
|
92 |
-
<span class='badge'>Streamlit</span>
|
93 |
-
""",
|
94 |
-
unsafe_allow_html=True,
|
95 |
-
)
|
96 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
97 |
-
|
98 |
-
# -----------------------------
|
99 |
-
# Sidebar: Controls / Parameters
|
100 |
-
# -----------------------------
|
101 |
-
with st.sidebar:
|
102 |
-
st.header("Settings")
|
103 |
-
|
104 |
-
st.caption("Model")
|
105 |
-
model_name_or_path = st.text_input(
|
106 |
-
"Model name or path",
|
107 |
-
value="sagawa/ReactionT5v2-forward",
|
108 |
-
help="Hugging Face Hub repo or local path",
|
109 |
-
)
|
110 |
-
st.markdown("---")
|
111 |
-
|
112 |
-
st.caption("Generation")
|
113 |
-
num_beams = st.slider("num_beams", 1, 10, 5, 1)
|
114 |
-
num_return_sequences = st.slider("num_return_sequences", 1, num_beams, num_beams, 1)
|
115 |
-
output_max_length = st.slider("max_length", 64, 512, 300, 8)
|
116 |
-
output_min_length = st.number_input("min_length", value=-1, step=1)
|
117 |
-
|
118 |
-
st.caption("Batch / Reproducibility")
|
119 |
-
batch_size = st.slider("batch_size", 1, 8, 1, 1)
|
120 |
-
seed = st.number_input("seed", value=42, step=1)
|
121 |
-
|
122 |
-
st.caption("Tokenizer / Input")
|
123 |
-
input_max_length = st.slider("input_max_length", 64, 512, 400, 8)
|
124 |
-
|
125 |
-
st.info(
|
126 |
-
"Rough guide: ~15 sec / reaction with `num_beams=5`.",
|
127 |
-
)
|
128 |
-
|
129 |
-
|
130 |
-
# -----------------------------
|
131 |
-
# Helper: caching
|
132 |
-
# -----------------------------
|
133 |
-
@st.cache_resource(show_spinner=False)
|
134 |
-
def load_model_and_tokenizer(
|
135 |
-
path_or_name: str,
|
136 |
-
) -> Tuple[AutoModelForSeq2SeqLM, AutoTokenizer]:
|
137 |
-
tok = AutoTokenizer.from_pretrained(
|
138 |
-
os.path.abspath(path_or_name) if os.path.exists(path_or_name) else path_or_name,
|
139 |
-
return_tensors="pt",
|
140 |
-
)
|
141 |
-
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
142 |
-
os.path.abspath(path_or_name) if os.path.exists(path_or_name) else path_or_name
|
143 |
-
)
|
144 |
-
return mdl, tok
|
145 |
-
|
146 |
-
|
147 |
-
@st.cache_data(show_spinner=False)
|
148 |
-
def read_demo_csv() -> str:
|
149 |
-
df = pd.read_csv("data/demo_reaction_data.csv")
|
150 |
-
return df.to_csv(index=False)
|
151 |
-
|
152 |
-
|
153 |
-
@st.cache_data(show_spinner=False)
|
154 |
-
def to_csv_bytes(df: pd.DataFrame) -> bytes:
|
155 |
-
return df.to_csv(index=False).encode("utf-8")
|
156 |
-
|
157 |
-
|
158 |
-
# -----------------------------
|
159 |
-
# I/O Tabs
|
160 |
-
# -----------------------------
|
161 |
-
tabs = st.tabs(["Input", "Output", "Guide"])
|
162 |
-
with tabs[0]:
|
163 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
164 |
-
st.subheader("Provide your input")
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
horizontal=True,
|
170 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
st.success("CSV uploaded.")
|
181 |
-
st.download_button(
|
182 |
-
label="Download demo_reaction_data.csv",
|
183 |
-
data=read_demo_csv(),
|
184 |
-
file_name="demo_reaction_data.csv",
|
185 |
-
mime="text/csv",
|
186 |
-
use_container_width=True,
|
187 |
)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
with tabs[2]:
|
199 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
200 |
-
st.subheader("Formatting rules")
|
201 |
-
st.markdown(
|
202 |
-
"""
|
203 |
-
- **Template**: `REACTANT:{reactants}REAGENT:{reagents}`
|
204 |
-
- **Multiple compounds**: join with `"."`
|
205 |
-
- **No reagent**: provide a single space `" "` after `REAGENT:`
|
206 |
-
- **CSV schema**: must contain an `input` column
|
207 |
-
- **Outputs**: predicted products (SMILES) and sum of log-likelihood per hypothesis
|
208 |
-
"""
|
209 |
-
)
|
210 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
211 |
-
|
212 |
-
# -----------------------------
|
213 |
-
# Predict Button
|
214 |
-
# -----------------------------
|
215 |
-
run = st.button("🚀 Predict", use_container_width=True)
|
216 |
-
|
217 |
-
# -----------------------------
|
218 |
-
# Execution
|
219 |
-
# -----------------------------
|
220 |
-
if run:
|
221 |
-
# Validate input
|
222 |
-
if input_mode == "CSV upload" and not csv_buffer:
|
223 |
-
st.error(
|
224 |
-
"Please upload a CSV file with an `input` column, or switch to Text area."
|
225 |
-
)
|
226 |
-
st.stop()
|
227 |
-
|
228 |
-
if input_mode == "Text area" and (
|
229 |
-
text_area_value is None or not text_area_value.strip()
|
230 |
-
):
|
231 |
-
st.error("Please enter at least one line of input.")
|
232 |
-
st.stop()
|
233 |
-
|
234 |
-
with st.status("Initializing model & tokenizer…", expanded=False) as status:
|
235 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
236 |
-
seed_everything(seed=seed)
|
237 |
-
model, tokenizer = load_model_and_tokenizer(model_name_or_path)
|
238 |
-
model = model.to(device).eval()
|
239 |
-
status.update(label="Model ready", state="complete")
|
240 |
-
|
241 |
-
# Prepare dataframe
|
242 |
-
if input_mode == "CSV upload":
|
243 |
-
df_in = pd.read_csv(pd.io.common.BytesIO(csv_buffer))
|
244 |
-
else:
|
245 |
-
lines = [x.strip() for x in text_area_value.splitlines() if x.strip()]
|
246 |
-
df_in = pd.DataFrame({"input": lines})
|
247 |
-
|
248 |
-
# Preprocess and dataset
|
249 |
-
try:
|
250 |
-
df_in = preprocess_df(df_in, drop_duplicates=False)
|
251 |
-
except Exception as e:
|
252 |
-
st.error(f"Input preprocessing failed: {e}")
|
253 |
-
st.stop()
|
254 |
-
|
255 |
-
class CFG:
|
256 |
-
# Configuration object used by ReactionT5Dataset/decode_output utilities
|
257 |
-
num_beams = num_beams
|
258 |
-
num_return_sequences = num_return_sequences
|
259 |
-
model_name_or_path = model_name_or_path
|
260 |
-
input_column = "input"
|
261 |
-
input_max_length = input_max_length
|
262 |
-
output_max_length = output_max_length
|
263 |
-
output_min_length = output_min_length
|
264 |
-
model = "t5"
|
265 |
-
seed = seed
|
266 |
-
batch_size = batch_size
|
267 |
-
device = device
|
268 |
-
tokenizer = tokenizer
|
269 |
-
|
270 |
-
dataset = ReactionT5Dataset(CFG, df_in)
|
271 |
-
dataloader = DataLoader(
|
272 |
-
dataset,
|
273 |
-
batch_size=CFG.batch_size,
|
274 |
-
shuffle=False,
|
275 |
-
num_workers=0 if not torch.cuda.is_available() else 4,
|
276 |
-
pin_memory=torch.cuda.is_available(),
|
277 |
-
drop_last=False,
|
278 |
-
)
|
279 |
-
|
280 |
-
# Progress UI
|
281 |
-
total_steps = len(dataloader)
|
282 |
-
progress = st.progress(0, text=f"Running generation… 0 / {total_steps}")
|
283 |
-
all_sequences, all_scores = [], []
|
284 |
-
|
285 |
-
try:
|
286 |
-
for idx, inputs in enumerate(dataloader, start=1):
|
287 |
inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
|
288 |
with torch.no_grad():
|
289 |
output = model.generate(
|
@@ -299,76 +108,23 @@ if run:
|
|
299 |
all_sequences.extend(sequences)
|
300 |
if scores:
|
301 |
all_scores.extend(scores)
|
302 |
-
|
303 |
-
# Memory hygiene
|
304 |
del output
|
305 |
-
|
306 |
-
torch.cuda.empty_cache()
|
307 |
gc.collect()
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
|
313 |
-
st.
|
314 |
-
|
315 |
-
|
316 |
-
st.stop()
|
317 |
|
318 |
-
|
319 |
-
try:
|
320 |
-
output_df = save_multiple_predictions(df_in, all_sequences, all_scores, CFG)
|
321 |
-
except Exception as e:
|
322 |
-
st.error(f"Post-processing failed: {e}")
|
323 |
-
st.stop()
|
324 |
|
325 |
-
with tabs[1]:
|
326 |
-
st.subheader("Results")
|
327 |
-
st.dataframe(output_df, use_container_width=True, hide_index=True)
|
328 |
st.download_button(
|
329 |
-
label="Download
|
330 |
-
data=
|
331 |
-
file_name="
|
332 |
mime="text/csv",
|
333 |
-
|
334 |
-
)
|
335 |
-
|
336 |
-
# -----------------------------
|
337 |
-
# Footer Note (replace this whole block)
|
338 |
-
# -----------------------------
|
339 |
-
st.markdown(
|
340 |
-
"""
|
341 |
-
<hr/>
|
342 |
-
<div style="font-size:0.95rem; line-height:1.6">
|
343 |
-
<strong>Citation</strong><br/>
|
344 |
-
Sagawa, T., & Kojima, R. (2025).
|
345 |
-
<em>ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data</em>.
|
346 |
-
<em>Journal of Cheminformatics</em>, 17(1), 126.
|
347 |
-
<a href="https://doi.org/10.1186/s13321-025-01075-4" target="_blank" rel="noopener">
|
348 |
-
https://doi.org/10.1186/s13321-025-01075-4
|
349 |
-
</a>
|
350 |
-
|
351 |
-
<details style="margin-top: .5rem;">
|
352 |
-
<summary style="cursor: pointer;">Show BibTeX</summary>
|
353 |
-
<pre style="white-space: pre-wrap; font-size:0.9rem; margin-top:.5rem;">
|
354 |
-
@article{Sagawa2025,
|
355 |
-
title = {ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data},
|
356 |
-
author = {Sagawa, Tatsuya and Kojima, Ryosuke},
|
357 |
-
journal = {Journal of Cheminformatics},
|
358 |
-
year = {2025},
|
359 |
-
volume = {17},
|
360 |
-
number = {1},
|
361 |
-
pages = {126},
|
362 |
-
doi = {10.1186/s13321-025-01075-4},
|
363 |
-
url = {https://doi.org/10.1186/s13321-025-01075-4}
|
364 |
-
}
|
365 |
-
</pre>
|
366 |
-
</details>
|
367 |
-
|
368 |
-
<div style="margin-top:.75rem; color:#666;">
|
369 |
-
Built with Streamlit and Transformers.
|
370 |
-
</div>
|
371 |
-
</div>
|
372 |
-
""",
|
373 |
-
unsafe_allow_html=True,
|
374 |
-
)
|
|
|
|
|
1 |
import gc
|
2 |
import os
|
3 |
import sys
|
4 |
import warnings
|
|
|
5 |
|
6 |
import pandas as pd
|
7 |
import streamlit as st
|
8 |
import torch
|
9 |
from torch.utils.data import DataLoader
|
10 |
+
from tqdm import tqdm
|
11 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
12 |
|
|
|
13 |
sys.path.append(
|
14 |
os.path.abspath(os.path.join(os.path.dirname(__file__), "task_forward"))
|
15 |
)
|
16 |
+
from generation_utils import (
|
17 |
+
ReactionT5Dataset,
|
18 |
+
decode_output,
|
19 |
+
save_multiple_predictions,
|
20 |
+
)
|
21 |
from train import preprocess_df
|
22 |
from utils import seed_everything
|
23 |
|
24 |
warnings.filterwarnings("ignore")
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
st.title("ReactionT5 task forward")
|
28 |
+
st.markdown("""
|
29 |
+
##### At this space, you can predict the products of reactions from their inputs.
|
30 |
+
##### The code expects input_data as a string or CSV file that contains an "input" column.
|
31 |
+
##### The format of the string or contents of the column should be "REACTANT:{reactants}REAGENT:{reagents}".
|
32 |
+
##### If there is no reagent, fill the blank with a space. For multiple compounds, concatenate them with ".".
|
33 |
+
##### The output contains SMILES of predicted products and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable product).
|
34 |
+
""")
|
35 |
+
|
36 |
+
st.download_button(
|
37 |
+
label="Download demo_reaction_data.csv",
|
38 |
+
data=pd.read_csv("data/demo_reaction_data.csv").to_csv(index=False),
|
39 |
+
file_name="demo_reaction_data.csv",
|
40 |
+
mime="text/csv",
|
|
|
41 |
)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
class CFG:
|
45 |
+
num_beams = st.number_input(
|
46 |
+
label="num beams", min_value=1, max_value=10, value=5, step=1
|
|
|
47 |
)
|
48 |
+
num_return_sequences = num_beams
|
49 |
+
input_data = st.file_uploader("Choose a CSV file")
|
50 |
+
model_name_or_path = "sagawa/ReactionT5v2-forward"
|
51 |
+
input_column = "input"
|
52 |
+
input_max_length = 400
|
53 |
+
output_max_length = 300
|
54 |
+
output_min_length = -1
|
55 |
+
model = "t5"
|
56 |
+
seed = 42
|
57 |
+
batch_size = 1
|
58 |
+
|
59 |
+
|
60 |
+
if st.button("predict"):
|
61 |
+
with st.spinner(
|
62 |
+
"Now processing. If num beams=5, this process takes about 15 seconds per reaction."
|
63 |
+
):
|
64 |
|
65 |
+
CFG.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
|
67 |
+
seed_everything(seed=CFG.seed)
|
68 |
|
69 |
+
CFG.tokenizer = AutoTokenizer.from_pretrained(
|
70 |
+
os.path.abspath(CFG.model_name_or_path)
|
71 |
+
if os.path.exists(CFG.model_name_or_path)
|
72 |
+
else CFG.model_name_or_path,
|
73 |
+
return_tensors="pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
76 |
+
os.path.abspath(CFG.model_name_or_path)
|
77 |
+
if os.path.exists(CFG.model_name_or_path)
|
78 |
+
else CFG.model_name_or_path
|
79 |
+
).to(CFG.device)
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
input_data = pd.read_csv(CFG.input_data)
|
83 |
+
input_data = preprocess_df(input_data, drop_duplicates=False)
|
84 |
+
dataset = ReactionT5Dataset(CFG, input_data)
|
85 |
+
dataloader = DataLoader(
|
86 |
+
dataset,
|
87 |
+
batch_size=CFG.batch_size,
|
88 |
+
shuffle=False,
|
89 |
+
num_workers=4,
|
90 |
+
pin_memory=True,
|
91 |
+
drop_last=False,
|
92 |
)
|
93 |
|
94 |
+
all_sequences, all_scores = [], []
|
95 |
+
for inputs in tqdm(dataloader, total=len(dataloader)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
|
97 |
with torch.no_grad():
|
98 |
output = model.generate(
|
|
|
108 |
all_sequences.extend(sequences)
|
109 |
if scores:
|
110 |
all_scores.extend(scores)
|
|
|
|
|
111 |
del output
|
112 |
+
torch.cuda.empty_cache()
|
|
|
113 |
gc.collect()
|
114 |
|
115 |
+
output_df = save_multiple_predictions(
|
116 |
+
input_data, all_sequences, all_scores, CFG
|
117 |
+
)
|
118 |
|
119 |
+
@st.cache
|
120 |
+
def convert_df(df):
|
121 |
+
return df.to_csv(index=False)
|
|
|
122 |
|
123 |
+
csv = convert_df(output_df)
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
125 |
st.download_button(
|
126 |
+
label="Download data as CSV",
|
127 |
+
data=csv,
|
128 |
+
file_name="output.csv",
|
129 |
mime="text/csv",
|
130 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|