Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,192 +1,179 @@
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
import warnings
|
|
|
5 |
import pandas as pd
|
6 |
-
import torch
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
-
from torch.utils.data import Dataset, DataLoader
|
9 |
-
import gc
|
10 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
14 |
-
|
15 |
-
st.title(
|
16 |
-
st.markdown(
|
17 |
##### At this space, you can predict the products of reactions from their inputs.
|
18 |
##### The code expects input_data as a string or CSV file that contains an "input" column.
|
19 |
##### The format of the string or contents of the column should be "REACTANT:{reactants}REAGENT:{reagents}".
|
20 |
##### If there is no reagent, fill the blank with a space. For multiple compounds, concatenate them with ".".
|
21 |
##### The output contains SMILES of predicted products and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable product).
|
22 |
-
|
23 |
-
|
24 |
-
display_text = 'input the reaction smiles (e.g. REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1)'
|
25 |
|
26 |
st.download_button(
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
class CFG():
|
34 |
-
num_beams = st.number_input(label='num beams', min_value=1, max_value=10, value=5, step=1)
|
35 |
-
num_return_sequences = num_beams
|
36 |
-
uploaded_file = st.file_uploader("Choose a CSV file")
|
37 |
-
input_data = st.text_area(display_text)
|
38 |
-
model_name_or_path = 'sagawa/ReactionT5v2-forward'
|
39 |
-
input_column = 'input'
|
40 |
-
input_max_length = 400
|
41 |
-
model = 't5'
|
42 |
-
seed = 42
|
43 |
-
batch_size=1
|
44 |
-
|
45 |
-
def seed_everything(seed=42):
|
46 |
-
random.seed(seed)
|
47 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
48 |
-
np.random.seed(seed)
|
49 |
-
torch.manual_seed(seed)
|
50 |
-
torch.cuda.manual_seed(seed)
|
51 |
-
torch.backends.cudnn.deterministic = True
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
text,
|
58 |
-
return_tensors="pt",
|
59 |
-
max_length=cfg.input_max_length,
|
60 |
-
padding="max_length",
|
61 |
-
truncation=True,
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
return prepare_input(self.cfg, self.inputs[idx])
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
)
|
91 |
-
return output
|
92 |
-
|
93 |
-
|
94 |
-
def decode_output(output):
|
95 |
-
sequences = [
|
96 |
-
tokenizer.decode(seq, skip_special_tokens=True).replace(" ", "").rstrip(".")
|
97 |
-
for seq in output["sequences"]
|
98 |
-
]
|
99 |
-
if CFG.num_beams > 1:
|
100 |
-
scores = output["sequences_scores"].tolist()
|
101 |
-
return sequences, scores
|
102 |
-
return sequences, None
|
103 |
-
|
104 |
-
|
105 |
-
def save_single_prediction(input_compound, output, scores):
|
106 |
-
output_data = [input_compound] + output + (scores if scores else [])
|
107 |
-
columns = (
|
108 |
-
["input"]
|
109 |
-
+ [f"{i}th" for i in range(CFG.num_beams)]
|
110 |
-
+ ([f"{i}th score" for i in range(CFG.num_beams)] if scores else [])
|
111 |
-
)
|
112 |
-
output_df = pd.DataFrame([output_data], columns=columns)
|
113 |
-
return output_df
|
114 |
-
|
115 |
-
|
116 |
-
def save_multiple_predictions(input_data, sequences, scores):
|
117 |
-
output_list = [
|
118 |
-
[input_data.loc[i // CFG.num_return_sequences, CFG.input_column]]
|
119 |
-
+ sequences[i : i + CFG.num_return_sequences]
|
120 |
-
+ scores[i : i + CFG.num_return_sequences]
|
121 |
-
for i in range(0, len(sequences), CFG.num_return_sequences)
|
122 |
-
]
|
123 |
-
columns = (
|
124 |
-
["input"]
|
125 |
-
+ [f"{i}th" for i in range(CFG.num_return_sequences)]
|
126 |
-
+ ([f"{i}th score" for i in range(CFG.num_return_sequences)] if scores else [])
|
127 |
-
)
|
128 |
-
output_df = pd.DataFrame(output_list, columns=columns)
|
129 |
-
return output_df
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
|
134 |
|
135 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
136 |
-
|
137 |
-
seed_everything(seed=CFG.seed)
|
138 |
-
|
139 |
-
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
|
140 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
|
141 |
-
model.eval()
|
142 |
-
|
143 |
-
if CFG.uploaded_file is None:
|
144 |
-
input_compound = CFG.input_data
|
145 |
-
output = predict_single_input(input_compound)
|
146 |
-
sequences, scores = decode_output(output)
|
147 |
-
output_df = save_single_prediction(input_compound, sequences, scores)
|
148 |
-
else:
|
149 |
-
input_data = pd.read_csv(CFG.uploaded_file)
|
150 |
-
dataset = ProductDataset(CFG, input_data)
|
151 |
-
dataloader = DataLoader(
|
152 |
-
dataset,
|
153 |
-
batch_size=CFG.batch_size,
|
154 |
-
shuffle=False,
|
155 |
-
num_workers=4,
|
156 |
-
pin_memory=True,
|
157 |
-
drop_last=False,
|
158 |
-
)
|
159 |
-
|
160 |
-
all_sequences, all_scores = [], []
|
161 |
-
for inputs in dataloader:
|
162 |
-
inputs = {k: v[0].to(device) for k, v in inputs.items()}
|
163 |
-
with torch.no_grad():
|
164 |
-
output = model.generate(
|
165 |
-
**inputs,
|
166 |
-
num_beams=CFG.num_beams,
|
167 |
-
num_return_sequences=CFG.num_return_sequences,
|
168 |
-
return_dict_in_generate=True,
|
169 |
-
output_scores=True,
|
170 |
-
)
|
171 |
-
sequences, scores = decode_output(output)
|
172 |
-
all_sequences.extend(sequences)
|
173 |
-
if scores:
|
174 |
-
all_scores.extend(scores)
|
175 |
-
del output
|
176 |
-
torch.cuda.empty_cache()
|
177 |
-
gc.collect()
|
178 |
-
|
179 |
-
output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
|
180 |
-
|
181 |
@st.cache
|
182 |
def convert_df(df):
|
183 |
return df.to_csv(index=False)
|
184 |
-
|
185 |
csv = convert_df(output_df)
|
186 |
-
|
187 |
st.download_button(
|
188 |
label="Download data as CSV",
|
189 |
data=csv,
|
190 |
-
file_name=
|
191 |
-
mime=
|
192 |
)
|
|
|
1 |
+
import gc
|
2 |
import os
|
3 |
+
import sys
|
|
|
4 |
import warnings
|
5 |
+
|
6 |
import pandas as pd
|
|
|
|
|
|
|
|
|
7 |
import streamlit as st
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
12 |
+
|
13 |
+
sys.path.append(
|
14 |
+
os.path.abspath(os.path.join(os.path.dirname(__file__), "task_forward"))
|
15 |
+
)
|
16 |
+
from generation_utils import (
|
17 |
+
ReactionT5Dataset,
|
18 |
+
decode_output,
|
19 |
+
save_multiple_predictions,
|
20 |
+
)
|
21 |
+
from train import preprocess_df
|
22 |
+
from utils import seed_everything
|
23 |
|
24 |
warnings.filterwarnings("ignore")
|
25 |
|
26 |
+
|
27 |
+
st.title("ReactionT5 task forward")
|
28 |
+
st.markdown("""
|
29 |
##### At this space, you can predict the products of reactions from their inputs.
|
30 |
##### The code expects input_data as a string or CSV file that contains an "input" column.
|
31 |
##### The format of the string or contents of the column should be "REACTANT:{reactants}REAGENT:{reagents}".
|
32 |
##### If there is no reagent, fill the blank with a space. For multiple compounds, concatenate them with ".".
|
33 |
##### The output contains SMILES of predicted products and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable product).
|
34 |
+
""")
|
|
|
|
|
35 |
|
36 |
st.download_button(
|
37 |
+
label="Download demo_reaction_data.csv",
|
38 |
+
data=pd.read_csv("data/demo_reaction_data.csv").to_csv(index=False),
|
39 |
+
file_name="demo_reaction_data.csv",
|
40 |
+
mime="text/csv",
|
41 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
+
class CFG:
|
45 |
+
num_beams = st.number_input(
|
46 |
+
label="num beams", min_value=1, max_value=10, value=5, step=1
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
+
num_return_sequences = num_beams
|
49 |
+
input_data = st.file_uploader("Choose a CSV file")
|
50 |
+
model_name_or_path = "sagawa/ReactionT5v2-forward"
|
51 |
+
input_column = "input"
|
52 |
+
input_max_length = 400
|
53 |
+
output_max_length = 300
|
54 |
+
model = "t5"
|
55 |
+
seed = 42
|
56 |
+
batch_size = 1
|
57 |
+
|
58 |
+
|
59 |
+
if st.button("predict"):
|
60 |
+
with st.spinner(
|
61 |
+
"Now processing. If num beams=5, this process takes about 15 seconds per reaction."
|
62 |
+
):
|
63 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
+
|
65 |
+
# seed_everything(seed=CFG.seed)
|
66 |
+
|
67 |
+
# tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
|
68 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
|
69 |
+
# model.eval()
|
70 |
+
|
71 |
+
# if CFG.uploaded_file is None:
|
72 |
+
# input_compound = CFG.input_data
|
73 |
+
# output = predict_single_input(input_compound)
|
74 |
+
# sequences, scores = decode_output(output)
|
75 |
+
# output_df = save_single_prediction(input_compound, sequences, scores)
|
76 |
+
# else:
|
77 |
+
# input_data = pd.read_csv(CFG.uploaded_file)
|
78 |
+
# dataset = ProductDataset(CFG, input_data)
|
79 |
+
# dataloader = DataLoader(
|
80 |
+
# dataset,
|
81 |
+
# batch_size=CFG.batch_size,
|
82 |
+
# shuffle=False,
|
83 |
+
# num_workers=4,
|
84 |
+
# pin_memory=True,
|
85 |
+
# drop_last=False,
|
86 |
+
# )
|
87 |
+
|
88 |
+
# all_sequences, all_scores = [], []
|
89 |
+
# for inputs in dataloader:
|
90 |
+
# inputs = {k: v[0].to(device) for k, v in inputs.items()}
|
91 |
+
# with torch.no_grad():
|
92 |
+
# output = model.generate(
|
93 |
+
# **inputs,
|
94 |
+
# num_beams=CFG.num_beams,
|
95 |
+
# num_return_sequences=CFG.num_return_sequences,
|
96 |
+
# return_dict_in_generate=True,
|
97 |
+
# output_scores=True,
|
98 |
+
# )
|
99 |
+
# sequences, scores = decode_output(output)
|
100 |
+
# all_sequences.extend(sequences)
|
101 |
+
# if scores:
|
102 |
+
# all_scores.extend(scores)
|
103 |
+
# del output
|
104 |
+
# torch.cuda.empty_cache()
|
105 |
+
# gc.collect()
|
106 |
+
|
107 |
+
# output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
|
108 |
+
|
109 |
+
CFG.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
110 |
+
|
111 |
+
if not os.path.exists(CFG.output_dir):
|
112 |
+
os.makedirs(CFG.output_dir)
|
113 |
|
114 |
+
seed_everything(seed=CFG.seed)
|
|
|
115 |
|
116 |
+
CFG.tokenizer = AutoTokenizer.from_pretrained(
|
117 |
+
os.path.abspath(CFG.model_name_or_path)
|
118 |
+
if os.path.exists(CFG.model_name_or_path)
|
119 |
+
else CFG.model_name_or_path,
|
120 |
+
return_tensors="pt",
|
121 |
+
)
|
122 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
123 |
+
os.path.abspath(CFG.model_name_or_path)
|
124 |
+
if os.path.exists(CFG.model_name_or_path)
|
125 |
+
else CFG.model_name_or_path
|
126 |
+
).to(CFG.device)
|
127 |
+
model.eval()
|
128 |
|
129 |
+
input_data = pd.read_csv(CFG.input_data)
|
130 |
+
input_data = preprocess_df(input_data, drop_duplicates=False)
|
131 |
+
dataset = ReactionT5Dataset(CFG, input_data)
|
132 |
+
dataloader = DataLoader(
|
133 |
+
dataset,
|
134 |
+
batch_size=CFG.batch_size,
|
135 |
+
shuffle=False,
|
136 |
+
num_workers=4,
|
137 |
+
pin_memory=True,
|
138 |
+
drop_last=False,
|
139 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
all_sequences, all_scores = [], []
|
142 |
+
for inputs in tqdm(dataloader, total=len(dataloader)):
|
143 |
+
inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
|
144 |
+
with torch.no_grad():
|
145 |
+
output = model.generate(
|
146 |
+
**inputs,
|
147 |
+
min_length=CFG.output_min_length,
|
148 |
+
max_length=CFG.output_max_length,
|
149 |
+
num_beams=CFG.num_beams,
|
150 |
+
num_return_sequences=CFG.num_return_sequences,
|
151 |
+
return_dict_in_generate=True,
|
152 |
+
output_scores=True,
|
153 |
+
)
|
154 |
+
sequences, scores = decode_output(output, CFG)
|
155 |
+
all_sequences.extend(sequences)
|
156 |
+
if scores:
|
157 |
+
all_scores.extend(scores)
|
158 |
+
del output
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
gc.collect()
|
161 |
+
|
162 |
+
output_df = save_multiple_predictions(
|
163 |
+
input_data, all_sequences, all_scores, CFG
|
164 |
+
)
|
165 |
|
166 |
+
# output_df.to_csv(os.path.join(CFG.output_dir, "output.csv"), index=False)
|
|
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
@st.cache
|
169 |
def convert_df(df):
|
170 |
return df.to_csv(index=False)
|
171 |
+
|
172 |
csv = convert_df(output_df)
|
173 |
+
|
174 |
st.download_button(
|
175 |
label="Download data as CSV",
|
176 |
data=csv,
|
177 |
+
file_name="output.csv",
|
178 |
+
mime="text/csv",
|
179 |
)
|