s2049's picture
Create app.py
dd21ebf verified
raw
history blame
27.1 kB
import pandas as pd
import requests
from bs4 import BeautifulSoup
import os
import re
import random
import io # No longer needed for CSV data, but keep for other potential uses
from dotenv import load_dotenv
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import time # For adding slight delays if TMDB API rate limits are hit
# --- Configuration ---
load_dotenv() # Load environment variables from .env file for local testing
TMDB_API_KEY = os.environ.get("TMDB_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
BASE_TMDB_URL = "https://api.themoviedb.org/3"
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
NUM_RECOMMENDATIONS_TO_GENERATE = 20 # Generate more initially
NUM_RECOMMENDATIONS_TO_DISPLAY = 5 # Display top 5
MIN_RATING_FOR_SEED = 3.5
MIN_VOTE_COUNT_TMDB = 100 # Min votes on TMDB for a movie to be considered
# --- Global Variables for Data (Load once) ---
df_profile_global = None
df_comments_global = None
df_watchlist_global = None
df_reviews_global = None
df_diary_global = None
df_ratings_global = None
df_watched_global = None # This will be a consolidated df
uri_to_movie_map_global = {}
all_watched_titles_global = set()
watchlist_titles_global = set()
favorite_film_details_global = []
seed_movies_global = []
# LLM Pipeline (Load once)
llm_pipeline = None
llm_tokenizer = None
# --- Helper Functions ---
def clean_html(raw_html):
if pd.isna(raw_html) or raw_html is None:
return ""
# Add space before tags to handle cases like </b>text
text = str(raw_html)
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines
soup = BeautifulSoup(text, "html.parser")
return soup.get_text(separator=" ", strip=True)
def get_movie_uri_map(dfs_dict):
"""Creates a map from Letterboxd URI to (Name, Year)."""
uri_map = {}
# Order of preference for names/years if URIs are duplicated across files
# (though Name/Year should ideally be consistent for the same URI)
df_priority = ['reviews.csv', 'diary.csv', 'ratings.csv', 'watched.csv', 'watchlist.csv']
processed_uris = set()
for df_name in df_priority:
df = dfs_dict.get(df_name)
if df is not None and 'Letterboxd URI' in df.columns and 'Name' in df.columns and 'Year' in df.columns:
for _, row in df.iterrows():
uri = row['Letterboxd URI']
if pd.notna(uri) and uri not in processed_uris:
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
year = int(row['Year']) # Ensure year is int
uri_map[uri] = (str(row['Name']), year)
processed_uris.add(uri)
except ValueError:
# print(f"Warning: Could not parse year for {row['Name']} in {df_name}. Skipping URI map entry.")
pass # Or handle as an error/log
return uri_map
def load_all_data():
global df_profile_global, df_comments_global, df_watchlist_global, df_reviews_global
global df_diary_global, df_ratings_global, df_watched_global, uri_to_movie_map_global
global all_watched_titles_global, watchlist_titles_global, favorite_film_details_global, seed_movies_global
# --- Load DataFrames from CSV files ---
# IMPORTANT: Ensure these CSV files are uploaded to your Hugging Face Space root.
try:
df_profile_global = pd.read_csv("profile.csv")
df_comments_global = pd.read_csv("comments.csv")
df_watchlist_global = pd.read_csv("watchlist.csv")
df_reviews_global = pd.read_csv("reviews.csv")
df_diary_global = pd.read_csv("diary.csv")
df_ratings_global = pd.read_csv("ratings.csv")
# The 'watched.csv' you provided seems to be a log similar to diary, but without ratings.
# We'll primarily use diary, reviews, and ratings for watched history with ratings.
_df_watched_log = pd.read_csv("watched.csv") # Raw watched log
except FileNotFoundError as e:
print(f"ERROR: CSV file not found: {e}. Please ensure all CSV files are uploaded to the HF Space.")
return False # Indicate failure
dfs_for_uri_map = {
"reviews.csv": df_reviews_global,
"diary.csv": df_diary_global,
"ratings.csv": df_ratings_global,
"watched.csv": _df_watched_log, # from watched.csv
"watchlist.csv": df_watchlist_global
}
uri_to_movie_map_global = get_movie_uri_map(dfs_for_uri_map)
# --- Consolidate Watched History ---
# Combine diary, reviews, and ratings to get a comprehensive view of watched movies and their ratings/reviews
# Standardize column names for easier merging
df_diary_global.rename(columns={'Rating': 'Diary Rating'}, inplace=True)
df_reviews_global.rename(columns={'Rating': 'Review Rating', 'Review': 'Review Text'}, inplace=True)
df_ratings_global.rename(columns={'Rating': 'Simple Rating'}, inplace=True)
# Merge based on Letterboxd URI, Name, and Year (if URI is missing, try Name/Year)
# Start with reviews as it's richest
consolidated = df_reviews_global[['Letterboxd URI', 'Name', 'Year', 'Review Rating', 'Review Text', 'Watched Date']].copy()
consolidated.rename(columns={'Review Rating': 'Rating'}, inplace=True)
# Merge diary
diary_subset = df_diary_global[['Letterboxd URI', 'Name', 'Year', 'Diary Rating', 'Watched Date']].copy()
diary_subset.rename(columns={'Diary Rating': 'Rating_diary', 'Watched Date': 'Watched Date_diary'}, inplace=True)
consolidated = pd.merge(consolidated, diary_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_diary'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_diary'])
consolidated['Watched Date'] = consolidated['Watched Date'].fillna(consolidated['Watched Date_diary'])
consolidated.drop(columns=['Rating_diary', 'Watched Date_diary'], inplace=True)
# Merge simple ratings
ratings_subset = df_ratings_global[['Letterboxd URI', 'Name', 'Year', 'Simple Rating']].copy()
ratings_subset.rename(columns={'Simple Rating': 'Rating_simple'}, inplace=True)
consolidated = pd.merge(consolidated, ratings_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_simple'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_simple'])
consolidated.drop(columns=['Rating_simple'], inplace=True)
# Add movies from the raw watched.csv if they aren't already there (they won't have ratings from this source)
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
# Add a 'Watched' column to mark these, and merge, filling NaNs appropriately
watched_log_subset['from_watched_log'] = True
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False)
# Clean up and fill NAs
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64') # Handle potential non-numeric years
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Movies must have a name and year
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
df_watched_global = consolidated
# Populate all_watched_titles_global (Name, Year) tuples
all_watched_titles_global = set(zip(df_watched_global['Name'].astype(str), df_watched_global['Year'].astype(int)))
# Add from raw watched log as well
for _, row in _df_watched_log.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
all_watched_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError:
pass
# --- Process Watchlist ---
if df_watchlist_global is not None:
watchlist_titles_global = set()
for _, row in df_watchlist_global.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
watchlist_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError:
pass
# --- Process Favorite Films ---
favorite_film_details_global = []
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns:
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
if pd.notna(fav_uris_str):
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
for uri in fav_uris:
if uri in uri_to_movie_map_global:
name, year = uri_to_movie_map_global[uri]
# Try to find rating and review from consolidated watched data
match = df_watched_global[(df_watched_global['Name'] == name) & (df_watched_global['Year'] == year)]
rating = match['Rating'].iloc[0] if not match.empty and pd.notna(match['Rating'].iloc[0]) else None
review = match['Review Text'].iloc[0] if not match.empty and match['Review Text'].iloc[0] else ""
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
# --- Identify Seed Movies ---
# Start with favorites
seed_movies_global.extend(favorite_film_details_global)
# Add other highly-rated movies (non-favorites)
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED]
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav}
for _, row in highly_rated_df.iterrows():
if row['Letterboxd URI'] not in favorite_uris: # Avoid duplicates if already in favorites
seed_movies_global.append({
'name': row['Name'],
'year': row['Year'],
'rating': row['Rating'],
'review_text': row['Review Text'],
'uri': row['Letterboxd URI']
})
# Remove duplicates based on name and year, preferring entries with more info (e.g., from favorites)
temp_df = pd.DataFrame(seed_movies_global)
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True)
seed_movies_global = temp_df.to_dict('records')
random.shuffle(seed_movies_global) # Shuffle to get variety if we pick a subset
return True # Indicate success
def initialize_llm():
global llm_pipeline, llm_tokenizer
if llm_pipeline is None:
print(f"Initializing LLM: {MODEL_NAME}")
try:
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# For CPU, bfloat16 might not be supported, try float32 or default
# Adding device_map="auto" and load_in_8bit=True for potentially better memory management on CPU
# For Spaces CPU, bitsandbytes might not be ideal. Try without quantization first if issues arise.
# Remove load_in_8bit if it causes issues on standard CPU Space.
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16, # Use float16 for faster inference and less memory
device_map="auto", # Automatically maps to available device (CPU or GPU if available)
# load_in_8bit=True, # Quantization - might need bitsandbytes
trust_remote_code=True,
token=HF_TOKEN if HF_TOKEN else None
)
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=llm_tokenizer,
torch_dtype=torch.float16,
device_map="auto"
)
print("LLM Initialized Successfully.")
except Exception as e:
print(f"Error initializing LLM: {e}")
llm_pipeline = None # Ensure it's None if initialization fails
# --- TMDB API Functions ---
def search_tmdb_movie_details(title, year):
if not TMDB_API_KEY:
print("TMDB API Key not configured.")
return None
try:
search_url = f"{BASE_TMDB_URL}/search/movie"
params = {'api_key': TMDB_API_KEY, 'query': title, 'year': year, 'language': 'en-US'}
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
if results:
movie = results[0]
# Fetch genres using the /movie/{movie_id} endpoint to get full genre names
movie_details_url = f"{BASE_TMDB_URL}/movie/{movie['id']}"
details_params = {'api_key': TMDB_API_KEY, 'language': 'en-US'}
details_response = requests.get(movie_details_url, params=details_params)
details_response.raise_for_status()
movie_full_details = details_response.json()
return {
'id': movie.get('id'),
'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4],
'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'genres': [genre['name'] for genre in movie_full_details.get('genres', [])],
'vote_average': movie.get('vote_average'),
'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
}
time.sleep(0.2) # Small delay to respect API rate limits
except requests.RequestException as e:
print(f"Error searching TMDB for {title} ({year}): {e}")
except Exception as ex:
print(f"Unexpected error in search_tmdb_movie_details for {title} ({year}): {ex}")
return None
def get_tmdb_recommendations(movie_id, page=1):
if not TMDB_API_KEY:
print("TMDB API Key not configured.")
return []
recommendations = []
try:
rec_url = f"{BASE_TMDB_URL}/movie/{movie_id}/recommendations"
params = {'api_key': TMDB_API_KEY, 'page': page, 'language': 'en-US'}
response = requests.get(rec_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
for movie in results:
if movie.get('vote_count', 0) >= MIN_VOTE_COUNT_TMDB:
recommendations.append({
'id': movie.get('id'),
'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4] if movie.get('release_date') else "N/A",
'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'vote_average': movie.get('vote_average'),
'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
})
time.sleep(0.2) # Small delay
except requests.RequestException as e:
print(f"Error getting TMDB recommendations for movie ID {movie_id}: {e}")
except Exception as ex:
print(f"Unexpected error in get_tmdb_recommendations for movie ID {movie_id}: {ex}")
return recommendations
# --- LLM Explanation Generation ---
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
global llm_pipeline, llm_tokenizer
if llm_pipeline is None or llm_tokenizer is None:
return "للأسف، نموذج الذكاء الاصطناعي مو جاهز الحين. حاول مرة ثانية بعد شوي."
# Truncate long context to avoid overly long prompts
max_context_len = 200
if len(seed_movie_context) > max_context_len:
seed_movie_context_short = seed_movie_context[:max_context_len] + "..."
else:
seed_movie_context_short = seed_movie_context
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف. المستخدم أعجب بالفيلم "{seed_movie_title}".
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
بناءً على ذلك، نُرشح له فيلم "{recommended_movie_title}".
اكتب جملة أو جملتين باللهجة السعودية العامية، تشرح ليش ممكن يعجبه الفيلم الجديد "{recommended_movie_title}"، مع ربطها بالفيلم اللي عجبه "{seed_movie_title}". خلي كلامك وناسة ويشد الواحد وما يكون طويل. لا تذكر أبداً أنك نموذج لغوي أو ذكاء اصطناعي.
مثال للأسلوب المطلوب (لو الفيلم اللي عجبه "Mad Max: Fury Road" والفيلم المرشح "Dune"):
"يا طويل العمر، شفت كيف 'Mad Max: Fury Road' عجّبك بجوّه الصحراوي والأكشن اللي ما يوقّف؟ أجل اسمع، 'Dune' بيوديك لصحراء ثانية بس أعظم وأفخم، وقصة تحبس الأنفاس! شد حيلك وشوفه."
الآن، الفيلم الذي أعجب المستخدم هو: "{seed_movie_title}"
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
الفيلم المرشح: "{recommended_movie_title}"
اشرح باللهجة السعودية: [/INST]"""
try:
sequences = llm_pipeline(
prompt_template,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=llm_tokenizer.eos_token_id,
max_new_tokens=100 # Limit output length
)
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
# Further clean up if the model repeats parts of the prompt or adds unwanted prefixes
explanation = re.sub(r"^اشرح باللهجة السعودية:\s*", "", explanation, flags=re.IGNORECASE)
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
if not explanation or explanation.lower().startswith("أنت ناقد أفلام"): # Fallback if generation is poor
return f"شكلك بتنبسط على فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
return explanation
except Exception as e:
print(f"Error during LLM generation: {e}")
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
# --- Recommendation Logic ---
def get_recommendations_for_salman(progress=gr.Progress()):
if not TMDB_API_KEY:
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو موجود. الرجاء إضافته كـ Secret في Hugging Face Space.</p>"
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global]):
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بياناتك. تأكد من رفع ملفات CSV بشكل صحيح.</p>"
if llm_pipeline is None:
initialize_llm() # Attempt to initialize if not already
if llm_pipeline is None:
return "<p style='color:red; text-align:right;'>خطأ: فشل في تهيئة نموذج الذكاء الاصطناعي. حاول تحديث الصفحة.</p>"
progress(0.1, desc="جمعنا أفلامك المفضلة واللي قيمتها عالي...")
potential_recs = {} # Store as {tmdb_id: {'movie_info': ..., 'seed_movie': ..., 'seed_context': ...}}
# Limit the number of seed movies to process to avoid excessive API calls / long processing
seeds_to_process = seed_movies_global[:30] if len(seed_movies_global) > 30 else seed_movies_global
for i, seed_movie in enumerate(seeds_to_process):
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie['name']}")
seed_tmdb_details = search_tmdb_movie_details(seed_movie['name'], seed_movie['year'])
if seed_tmdb_details and seed_tmdb_details.get('id'):
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
for rec in tmdb_recs:
rec_tuple = (str(rec['title']), int(rec['year'])) # (Name, Year)
# Ensure rec_tuple elements are of correct type before comparison
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
if rec['id'] not in potential_recs: # Add if new, prioritizing first seed
potential_recs[rec['id']] = {
'movie_info': rec,
'seed_movie_title': seed_movie['name'],
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
}
# Simple content-based similarity as a fallback or supplement (Optional, can be complex)
# For now, primarily TMDB-based
if not potential_recs:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً. يمكن شفت كل شيء رهيب! 😉</p>"
# Sort recommendations (e.g., by popularity or a mix, or just randomize for now)
# Let's sort by TMDB popularity for now to get some generally well-regarded films
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
final_recommendations_data = []
# Take top N distinct recommendations
displayed_ids = set()
for rec_data in sorted_recs_list:
if len(final_recommendations_data) >= NUM_RECOMMENDATIONS_TO_DISPLAY:
break
if rec_data['movie_info']['id'] not in displayed_ids:
final_recommendations_data.append(rec_data)
displayed_ids.add(rec_data['movie_info']['id'])
if not final_recommendations_data:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. يمكن شفت كل شيء رهيب! 😉</p>"
output_html = "<div>" # Main container
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
for i, rec_data in enumerate(final_recommendations_data):
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
explanation = generate_saudi_explanation(
rec_data['movie_info']['title'],
rec_data['seed_movie_title'],
rec_data['seed_movie_context']
)
poster_url = rec_data['movie_info']['poster_path']
if not poster_url or "placeholder.com" in poster_url: # Use a default if no poster
poster_url = f"https://via.placeholder.com/300x450.png?text={rec_data['movie_info']['title'].replace(' ', '+')}"
output_html += f"""
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px;">
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
<div style="text-align: right; direction: rtl; flex-grow: 1;">
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
<p style="font-size: 0.9em; color: #777; margin-top: 10px;"><em>يا وحش، رشحنا لك هذا الفيلم لأنك حبيت: <strong style="color:#555;">{rec_data['seed_movie_title']}</strong></em></p>
</div>
</div>
"""
output_html += "</div>"
return gr.HTML(output_html)
# --- Gradio Interface ---
css = """
body { font-family: 'Tajawal', sans-serif; }
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; }
footer { display: none !important; }
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 10px 20px !important; border-radius: 8px !important; }
.gr-button:hover { background-color: #a3002f !important; }
.gr-input { text-align: right !important; }
.gr-output { text-align: right !important; }
h1, h3 { color: #900c3f !important; }
"""
# Load data once when the script starts
data_loaded_successfully = load_all_data()
if data_loaded_successfully:
print("All user data loaded and preprocessed successfully.")
# Initialize LLM after data loading to ensure it happens on app startup if data is present
initialize_llm()
else:
print("Failed to load user data. The app might not function correctly.")
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink"), css=css) as iface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1 style="color: #c70039; font-size: 2.5em;">🎬 رفيقك السينمائي 🍿</h1>
<p style="font-size: 1.2em; color: #555;">يا هلا بك يا سلمان! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
</div>
"""
)
recommend_button = gr.Button("يا سلمان، عطني توصيات أفلام!")
with gr.Column():
output_recommendations = gr.HTML(label="توصياتك النارية 🔥")
recommend_button.click(
fn=get_recommendations_for_salman,
inputs=[],
outputs=[output_recommendations]
)
gr.Markdown(
"""
<div style="text-align: center; margin-top: 30px; font-size: 0.9em; color: #777;">
<p>تم تطوير هذا النظام بواسطة الذكاء الاصطناعي مع لمسة شخصية من بياناتك في ليتربوكسد.</p>
<p>استمتع بالمشاهدة! 🎥</p>
</div>
"""
)
if __name__ == "__main__":
iface.launch(debug=True) # debug=True for local testing, remove for HF