Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import random
|
7 |
+
import io # No longer needed for CSV data, but keep for other potential uses
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
13 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
+
import time # For adding slight delays if TMDB API rate limits are hit
|
15 |
+
|
16 |
+
# --- Configuration ---
|
17 |
+
load_dotenv() # Load environment variables from .env file for local testing
|
18 |
+
TMDB_API_KEY = os.environ.get("TMDB_API_KEY")
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
|
21 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
|
22 |
+
|
23 |
+
BASE_TMDB_URL = "https://api.themoviedb.org/3"
|
24 |
+
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
|
25 |
+
NUM_RECOMMENDATIONS_TO_GENERATE = 20 # Generate more initially
|
26 |
+
NUM_RECOMMENDATIONS_TO_DISPLAY = 5 # Display top 5
|
27 |
+
MIN_RATING_FOR_SEED = 3.5
|
28 |
+
MIN_VOTE_COUNT_TMDB = 100 # Min votes on TMDB for a movie to be considered
|
29 |
+
|
30 |
+
# --- Global Variables for Data (Load once) ---
|
31 |
+
df_profile_global = None
|
32 |
+
df_comments_global = None
|
33 |
+
df_watchlist_global = None
|
34 |
+
df_reviews_global = None
|
35 |
+
df_diary_global = None
|
36 |
+
df_ratings_global = None
|
37 |
+
df_watched_global = None # This will be a consolidated df
|
38 |
+
|
39 |
+
uri_to_movie_map_global = {}
|
40 |
+
all_watched_titles_global = set()
|
41 |
+
watchlist_titles_global = set()
|
42 |
+
favorite_film_details_global = []
|
43 |
+
seed_movies_global = []
|
44 |
+
|
45 |
+
# LLM Pipeline (Load once)
|
46 |
+
llm_pipeline = None
|
47 |
+
llm_tokenizer = None
|
48 |
+
|
49 |
+
# --- Helper Functions ---
|
50 |
+
def clean_html(raw_html):
|
51 |
+
if pd.isna(raw_html) or raw_html is None:
|
52 |
+
return ""
|
53 |
+
# Add space before tags to handle cases like </b>text
|
54 |
+
text = str(raw_html)
|
55 |
+
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines
|
56 |
+
soup = BeautifulSoup(text, "html.parser")
|
57 |
+
return soup.get_text(separator=" ", strip=True)
|
58 |
+
|
59 |
+
def get_movie_uri_map(dfs_dict):
|
60 |
+
"""Creates a map from Letterboxd URI to (Name, Year)."""
|
61 |
+
uri_map = {}
|
62 |
+
# Order of preference for names/years if URIs are duplicated across files
|
63 |
+
# (though Name/Year should ideally be consistent for the same URI)
|
64 |
+
df_priority = ['reviews.csv', 'diary.csv', 'ratings.csv', 'watched.csv', 'watchlist.csv']
|
65 |
+
|
66 |
+
processed_uris = set()
|
67 |
+
|
68 |
+
for df_name in df_priority:
|
69 |
+
df = dfs_dict.get(df_name)
|
70 |
+
if df is not None and 'Letterboxd URI' in df.columns and 'Name' in df.columns and 'Year' in df.columns:
|
71 |
+
for _, row in df.iterrows():
|
72 |
+
uri = row['Letterboxd URI']
|
73 |
+
if pd.notna(uri) and uri not in processed_uris:
|
74 |
+
if pd.notna(row['Name']) and pd.notna(row['Year']):
|
75 |
+
try:
|
76 |
+
year = int(row['Year']) # Ensure year is int
|
77 |
+
uri_map[uri] = (str(row['Name']), year)
|
78 |
+
processed_uris.add(uri)
|
79 |
+
except ValueError:
|
80 |
+
# print(f"Warning: Could not parse year for {row['Name']} in {df_name}. Skipping URI map entry.")
|
81 |
+
pass # Or handle as an error/log
|
82 |
+
return uri_map
|
83 |
+
|
84 |
+
def load_all_data():
|
85 |
+
global df_profile_global, df_comments_global, df_watchlist_global, df_reviews_global
|
86 |
+
global df_diary_global, df_ratings_global, df_watched_global, uri_to_movie_map_global
|
87 |
+
global all_watched_titles_global, watchlist_titles_global, favorite_film_details_global, seed_movies_global
|
88 |
+
|
89 |
+
# --- Load DataFrames from CSV files ---
|
90 |
+
# IMPORTANT: Ensure these CSV files are uploaded to your Hugging Face Space root.
|
91 |
+
try:
|
92 |
+
df_profile_global = pd.read_csv("profile.csv")
|
93 |
+
df_comments_global = pd.read_csv("comments.csv")
|
94 |
+
df_watchlist_global = pd.read_csv("watchlist.csv")
|
95 |
+
df_reviews_global = pd.read_csv("reviews.csv")
|
96 |
+
df_diary_global = pd.read_csv("diary.csv")
|
97 |
+
df_ratings_global = pd.read_csv("ratings.csv")
|
98 |
+
# The 'watched.csv' you provided seems to be a log similar to diary, but without ratings.
|
99 |
+
# We'll primarily use diary, reviews, and ratings for watched history with ratings.
|
100 |
+
_df_watched_log = pd.read_csv("watched.csv") # Raw watched log
|
101 |
+
except FileNotFoundError as e:
|
102 |
+
print(f"ERROR: CSV file not found: {e}. Please ensure all CSV files are uploaded to the HF Space.")
|
103 |
+
return False # Indicate failure
|
104 |
+
|
105 |
+
dfs_for_uri_map = {
|
106 |
+
"reviews.csv": df_reviews_global,
|
107 |
+
"diary.csv": df_diary_global,
|
108 |
+
"ratings.csv": df_ratings_global,
|
109 |
+
"watched.csv": _df_watched_log, # from watched.csv
|
110 |
+
"watchlist.csv": df_watchlist_global
|
111 |
+
}
|
112 |
+
uri_to_movie_map_global = get_movie_uri_map(dfs_for_uri_map)
|
113 |
+
|
114 |
+
# --- Consolidate Watched History ---
|
115 |
+
# Combine diary, reviews, and ratings to get a comprehensive view of watched movies and their ratings/reviews
|
116 |
+
# Standardize column names for easier merging
|
117 |
+
df_diary_global.rename(columns={'Rating': 'Diary Rating'}, inplace=True)
|
118 |
+
df_reviews_global.rename(columns={'Rating': 'Review Rating', 'Review': 'Review Text'}, inplace=True)
|
119 |
+
df_ratings_global.rename(columns={'Rating': 'Simple Rating'}, inplace=True)
|
120 |
+
|
121 |
+
# Merge based on Letterboxd URI, Name, and Year (if URI is missing, try Name/Year)
|
122 |
+
# Start with reviews as it's richest
|
123 |
+
consolidated = df_reviews_global[['Letterboxd URI', 'Name', 'Year', 'Review Rating', 'Review Text', 'Watched Date']].copy()
|
124 |
+
consolidated.rename(columns={'Review Rating': 'Rating'}, inplace=True)
|
125 |
+
|
126 |
+
# Merge diary
|
127 |
+
diary_subset = df_diary_global[['Letterboxd URI', 'Name', 'Year', 'Diary Rating', 'Watched Date']].copy()
|
128 |
+
diary_subset.rename(columns={'Diary Rating': 'Rating_diary', 'Watched Date': 'Watched Date_diary'}, inplace=True)
|
129 |
+
consolidated = pd.merge(consolidated, diary_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_diary'))
|
130 |
+
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_diary'])
|
131 |
+
consolidated['Watched Date'] = consolidated['Watched Date'].fillna(consolidated['Watched Date_diary'])
|
132 |
+
consolidated.drop(columns=['Rating_diary', 'Watched Date_diary'], inplace=True)
|
133 |
+
|
134 |
+
|
135 |
+
# Merge simple ratings
|
136 |
+
ratings_subset = df_ratings_global[['Letterboxd URI', 'Name', 'Year', 'Simple Rating']].copy()
|
137 |
+
ratings_subset.rename(columns={'Simple Rating': 'Rating_simple'}, inplace=True)
|
138 |
+
consolidated = pd.merge(consolidated, ratings_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_simple'))
|
139 |
+
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_simple'])
|
140 |
+
consolidated.drop(columns=['Rating_simple'], inplace=True)
|
141 |
+
|
142 |
+
# Add movies from the raw watched.csv if they aren't already there (they won't have ratings from this source)
|
143 |
+
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
|
144 |
+
# Add a 'Watched' column to mark these, and merge, filling NaNs appropriately
|
145 |
+
watched_log_subset['from_watched_log'] = True
|
146 |
+
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
|
147 |
+
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False)
|
148 |
+
|
149 |
+
|
150 |
+
# Clean up and fill NAs
|
151 |
+
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
|
152 |
+
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64') # Handle potential non-numeric years
|
153 |
+
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Movies must have a name and year
|
154 |
+
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
|
155 |
+
|
156 |
+
df_watched_global = consolidated
|
157 |
+
|
158 |
+
# Populate all_watched_titles_global (Name, Year) tuples
|
159 |
+
all_watched_titles_global = set(zip(df_watched_global['Name'].astype(str), df_watched_global['Year'].astype(int)))
|
160 |
+
# Add from raw watched log as well
|
161 |
+
for _, row in _df_watched_log.iterrows():
|
162 |
+
if pd.notna(row['Name']) and pd.notna(row['Year']):
|
163 |
+
try:
|
164 |
+
all_watched_titles_global.add((str(row['Name']), int(row['Year'])))
|
165 |
+
except ValueError:
|
166 |
+
pass
|
167 |
+
|
168 |
+
|
169 |
+
# --- Process Watchlist ---
|
170 |
+
if df_watchlist_global is not None:
|
171 |
+
watchlist_titles_global = set()
|
172 |
+
for _, row in df_watchlist_global.iterrows():
|
173 |
+
if pd.notna(row['Name']) and pd.notna(row['Year']):
|
174 |
+
try:
|
175 |
+
watchlist_titles_global.add((str(row['Name']), int(row['Year'])))
|
176 |
+
except ValueError:
|
177 |
+
pass
|
178 |
+
|
179 |
+
|
180 |
+
# --- Process Favorite Films ---
|
181 |
+
favorite_film_details_global = []
|
182 |
+
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns:
|
183 |
+
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
|
184 |
+
if pd.notna(fav_uris_str):
|
185 |
+
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
|
186 |
+
for uri in fav_uris:
|
187 |
+
if uri in uri_to_movie_map_global:
|
188 |
+
name, year = uri_to_movie_map_global[uri]
|
189 |
+
# Try to find rating and review from consolidated watched data
|
190 |
+
match = df_watched_global[(df_watched_global['Name'] == name) & (df_watched_global['Year'] == year)]
|
191 |
+
rating = match['Rating'].iloc[0] if not match.empty and pd.notna(match['Rating'].iloc[0]) else None
|
192 |
+
review = match['Review Text'].iloc[0] if not match.empty and match['Review Text'].iloc[0] else ""
|
193 |
+
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
|
194 |
+
|
195 |
+
# --- Identify Seed Movies ---
|
196 |
+
# Start with favorites
|
197 |
+
seed_movies_global.extend(favorite_film_details_global)
|
198 |
+
|
199 |
+
# Add other highly-rated movies (non-favorites)
|
200 |
+
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED]
|
201 |
+
|
202 |
+
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav}
|
203 |
+
|
204 |
+
for _, row in highly_rated_df.iterrows():
|
205 |
+
if row['Letterboxd URI'] not in favorite_uris: # Avoid duplicates if already in favorites
|
206 |
+
seed_movies_global.append({
|
207 |
+
'name': row['Name'],
|
208 |
+
'year': row['Year'],
|
209 |
+
'rating': row['Rating'],
|
210 |
+
'review_text': row['Review Text'],
|
211 |
+
'uri': row['Letterboxd URI']
|
212 |
+
})
|
213 |
+
# Remove duplicates based on name and year, preferring entries with more info (e.g., from favorites)
|
214 |
+
temp_df = pd.DataFrame(seed_movies_global)
|
215 |
+
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True)
|
216 |
+
seed_movies_global = temp_df.to_dict('records')
|
217 |
+
|
218 |
+
random.shuffle(seed_movies_global) # Shuffle to get variety if we pick a subset
|
219 |
+
|
220 |
+
return True # Indicate success
|
221 |
+
|
222 |
+
def initialize_llm():
|
223 |
+
global llm_pipeline, llm_tokenizer
|
224 |
+
if llm_pipeline is None:
|
225 |
+
print(f"Initializing LLM: {MODEL_NAME}")
|
226 |
+
try:
|
227 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
228 |
+
# For CPU, bfloat16 might not be supported, try float32 or default
|
229 |
+
# Adding device_map="auto" and load_in_8bit=True for potentially better memory management on CPU
|
230 |
+
# For Spaces CPU, bitsandbytes might not be ideal. Try without quantization first if issues arise.
|
231 |
+
# Remove load_in_8bit if it causes issues on standard CPU Space.
|
232 |
+
model = AutoModelForCausalLM.from_pretrained(
|
233 |
+
MODEL_NAME,
|
234 |
+
torch_dtype=torch.float16, # Use float16 for faster inference and less memory
|
235 |
+
device_map="auto", # Automatically maps to available device (CPU or GPU if available)
|
236 |
+
# load_in_8bit=True, # Quantization - might need bitsandbytes
|
237 |
+
trust_remote_code=True,
|
238 |
+
token=HF_TOKEN if HF_TOKEN else None
|
239 |
+
)
|
240 |
+
llm_pipeline = pipeline(
|
241 |
+
"text-generation",
|
242 |
+
model=model,
|
243 |
+
tokenizer=llm_tokenizer,
|
244 |
+
torch_dtype=torch.float16,
|
245 |
+
device_map="auto"
|
246 |
+
)
|
247 |
+
print("LLM Initialized Successfully.")
|
248 |
+
except Exception as e:
|
249 |
+
print(f"Error initializing LLM: {e}")
|
250 |
+
llm_pipeline = None # Ensure it's None if initialization fails
|
251 |
+
|
252 |
+
# --- TMDB API Functions ---
|
253 |
+
def search_tmdb_movie_details(title, year):
|
254 |
+
if not TMDB_API_KEY:
|
255 |
+
print("TMDB API Key not configured.")
|
256 |
+
return None
|
257 |
+
try:
|
258 |
+
search_url = f"{BASE_TMDB_URL}/search/movie"
|
259 |
+
params = {'api_key': TMDB_API_KEY, 'query': title, 'year': year, 'language': 'en-US'}
|
260 |
+
response = requests.get(search_url, params=params)
|
261 |
+
response.raise_for_status()
|
262 |
+
results = response.json().get('results', [])
|
263 |
+
if results:
|
264 |
+
movie = results[0]
|
265 |
+
# Fetch genres using the /movie/{movie_id} endpoint to get full genre names
|
266 |
+
movie_details_url = f"{BASE_TMDB_URL}/movie/{movie['id']}"
|
267 |
+
details_params = {'api_key': TMDB_API_KEY, 'language': 'en-US'}
|
268 |
+
details_response = requests.get(movie_details_url, params=details_params)
|
269 |
+
details_response.raise_for_status()
|
270 |
+
movie_full_details = details_response.json()
|
271 |
+
|
272 |
+
return {
|
273 |
+
'id': movie.get('id'),
|
274 |
+
'title': movie.get('title'),
|
275 |
+
'year': str(movie.get('release_date', ''))[:4],
|
276 |
+
'overview': movie.get('overview'),
|
277 |
+
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
|
278 |
+
'genres': [genre['name'] for genre in movie_full_details.get('genres', [])],
|
279 |
+
'vote_average': movie.get('vote_average'),
|
280 |
+
'vote_count': movie.get('vote_count'),
|
281 |
+
'popularity': movie.get('popularity')
|
282 |
+
}
|
283 |
+
time.sleep(0.2) # Small delay to respect API rate limits
|
284 |
+
except requests.RequestException as e:
|
285 |
+
print(f"Error searching TMDB for {title} ({year}): {e}")
|
286 |
+
except Exception as ex:
|
287 |
+
print(f"Unexpected error in search_tmdb_movie_details for {title} ({year}): {ex}")
|
288 |
+
return None
|
289 |
+
|
290 |
+
def get_tmdb_recommendations(movie_id, page=1):
|
291 |
+
if not TMDB_API_KEY:
|
292 |
+
print("TMDB API Key not configured.")
|
293 |
+
return []
|
294 |
+
recommendations = []
|
295 |
+
try:
|
296 |
+
rec_url = f"{BASE_TMDB_URL}/movie/{movie_id}/recommendations"
|
297 |
+
params = {'api_key': TMDB_API_KEY, 'page': page, 'language': 'en-US'}
|
298 |
+
response = requests.get(rec_url, params=params)
|
299 |
+
response.raise_for_status()
|
300 |
+
results = response.json().get('results', [])
|
301 |
+
|
302 |
+
for movie in results:
|
303 |
+
if movie.get('vote_count', 0) >= MIN_VOTE_COUNT_TMDB:
|
304 |
+
recommendations.append({
|
305 |
+
'id': movie.get('id'),
|
306 |
+
'title': movie.get('title'),
|
307 |
+
'year': str(movie.get('release_date', ''))[:4] if movie.get('release_date') else "N/A",
|
308 |
+
'overview': movie.get('overview'),
|
309 |
+
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
|
310 |
+
'vote_average': movie.get('vote_average'),
|
311 |
+
'vote_count': movie.get('vote_count'),
|
312 |
+
'popularity': movie.get('popularity')
|
313 |
+
})
|
314 |
+
time.sleep(0.2) # Small delay
|
315 |
+
except requests.RequestException as e:
|
316 |
+
print(f"Error getting TMDB recommendations for movie ID {movie_id}: {e}")
|
317 |
+
except Exception as ex:
|
318 |
+
print(f"Unexpected error in get_tmdb_recommendations for movie ID {movie_id}: {ex}")
|
319 |
+
return recommendations
|
320 |
+
|
321 |
+
# --- LLM Explanation Generation ---
|
322 |
+
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
|
323 |
+
global llm_pipeline, llm_tokenizer
|
324 |
+
if llm_pipeline is None or llm_tokenizer is None:
|
325 |
+
return "للأسف، نموذج الذكاء الاصطناعي مو جاهز الحين. حاول مرة ثانية بعد شوي."
|
326 |
+
|
327 |
+
# Truncate long context to avoid overly long prompts
|
328 |
+
max_context_len = 200
|
329 |
+
if len(seed_movie_context) > max_context_len:
|
330 |
+
seed_movie_context_short = seed_movie_context[:max_context_len] + "..."
|
331 |
+
else:
|
332 |
+
seed_movie_context_short = seed_movie_context
|
333 |
+
|
334 |
+
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف. المستخدم أعجب بالفيلم "{seed_movie_title}".
|
335 |
+
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
|
336 |
+
بناءً على ذلك، نُرشح له فيلم "{recommended_movie_title}".
|
337 |
+
اكتب جملة أو جملتين باللهجة السعودية العامية، تشرح ليش ممكن يعجبه الفيلم الجديد "{recommended_movie_title}"، مع ربطها بالفيلم اللي عجبه "{seed_movie_title}". خلي كلامك وناسة ويشد الواحد وما يكون طويل. لا تذكر أبداً أنك نموذج لغوي أو ذكاء اصطناعي.
|
338 |
+
|
339 |
+
مثال للأسلوب المطلوب (لو الفيلم اللي عجبه "Mad Max: Fury Road" والفيلم المرشح "Dune"):
|
340 |
+
"يا طويل العمر، شفت كيف 'Mad Max: Fury Road' عجّبك بجوّه الصحراوي والأكشن اللي ما يوقّف؟ أجل اسمع، 'Dune' بيوديك لصحراء ثانية بس أعظم وأفخم، وقصة تحبس الأنفاس! شد حيلك وشوفه."
|
341 |
+
|
342 |
+
الآن، الفيلم الذي أعجب المستخدم هو: "{seed_movie_title}"
|
343 |
+
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
|
344 |
+
الفيلم المرشح: "{recommended_movie_title}"
|
345 |
+
اشرح باللهجة السعودية: [/INST]"""
|
346 |
+
|
347 |
+
try:
|
348 |
+
sequences = llm_pipeline(
|
349 |
+
prompt_template,
|
350 |
+
do_sample=True,
|
351 |
+
top_k=10,
|
352 |
+
num_return_sequences=1,
|
353 |
+
eos_token_id=llm_tokenizer.eos_token_id,
|
354 |
+
max_new_tokens=100 # Limit output length
|
355 |
+
)
|
356 |
+
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
|
357 |
+
# Further clean up if the model repeats parts of the prompt or adds unwanted prefixes
|
358 |
+
explanation = re.sub(r"^اشرح باللهجة السعودية:\s*", "", explanation, flags=re.IGNORECASE)
|
359 |
+
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
|
360 |
+
if not explanation or explanation.lower().startswith("أنت ناقد أفلام"): # Fallback if generation is poor
|
361 |
+
return f"شكلك بتنبسط على فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
|
362 |
+
return explanation
|
363 |
+
except Exception as e:
|
364 |
+
print(f"Error during LLM generation: {e}")
|
365 |
+
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
|
366 |
+
|
367 |
+
# --- Recommendation Logic ---
|
368 |
+
def get_recommendations_for_salman(progress=gr.Progress()):
|
369 |
+
if not TMDB_API_KEY:
|
370 |
+
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو موجود. الرجاء إضافته كـ Secret في Hugging Face Space.</p>"
|
371 |
+
|
372 |
+
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global]):
|
373 |
+
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بياناتك. تأكد من رفع ملفات CSV بشكل صحيح.</p>"
|
374 |
+
|
375 |
+
if llm_pipeline is None:
|
376 |
+
initialize_llm() # Attempt to initialize if not already
|
377 |
+
if llm_pipeline is None:
|
378 |
+
return "<p style='color:red; text-align:right;'>خطأ: فشل في تهيئة نموذج الذكاء الاصطناعي. حاول تحديث الصفحة.</p>"
|
379 |
+
|
380 |
+
|
381 |
+
progress(0.1, desc="جمعنا أفلامك المفضلة واللي قيمتها عالي...")
|
382 |
+
|
383 |
+
potential_recs = {} # Store as {tmdb_id: {'movie_info': ..., 'seed_movie': ..., 'seed_context': ...}}
|
384 |
+
|
385 |
+
# Limit the number of seed movies to process to avoid excessive API calls / long processing
|
386 |
+
seeds_to_process = seed_movies_global[:30] if len(seed_movies_global) > 30 else seed_movies_global
|
387 |
+
|
388 |
+
for i, seed_movie in enumerate(seeds_to_process):
|
389 |
+
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie['name']}")
|
390 |
+
|
391 |
+
seed_tmdb_details = search_tmdb_movie_details(seed_movie['name'], seed_movie['year'])
|
392 |
+
if seed_tmdb_details and seed_tmdb_details.get('id'):
|
393 |
+
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
|
394 |
+
for rec in tmdb_recs:
|
395 |
+
rec_tuple = (str(rec['title']), int(rec['year'])) # (Name, Year)
|
396 |
+
# Ensure rec_tuple elements are of correct type before comparison
|
397 |
+
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
|
398 |
+
if rec['id'] not in potential_recs: # Add if new, prioritizing first seed
|
399 |
+
potential_recs[rec['id']] = {
|
400 |
+
'movie_info': rec,
|
401 |
+
'seed_movie_title': seed_movie['name'],
|
402 |
+
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
|
403 |
+
}
|
404 |
+
# Simple content-based similarity as a fallback or supplement (Optional, can be complex)
|
405 |
+
# For now, primarily TMDB-based
|
406 |
+
|
407 |
+
if not potential_recs:
|
408 |
+
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً. يمكن شفت كل شيء رهيب! 😉</p>"
|
409 |
+
|
410 |
+
# Sort recommendations (e.g., by popularity or a mix, or just randomize for now)
|
411 |
+
# Let's sort by TMDB popularity for now to get some generally well-regarded films
|
412 |
+
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
|
413 |
+
|
414 |
+
final_recommendations_data = []
|
415 |
+
|
416 |
+
# Take top N distinct recommendations
|
417 |
+
displayed_ids = set()
|
418 |
+
for rec_data in sorted_recs_list:
|
419 |
+
if len(final_recommendations_data) >= NUM_RECOMMENDATIONS_TO_DISPLAY:
|
420 |
+
break
|
421 |
+
if rec_data['movie_info']['id'] not in displayed_ids:
|
422 |
+
final_recommendations_data.append(rec_data)
|
423 |
+
displayed_ids.add(rec_data['movie_info']['id'])
|
424 |
+
|
425 |
+
if not final_recommendations_data:
|
426 |
+
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. يمكن شفت كل شيء رهيب! 😉</p>"
|
427 |
+
|
428 |
+
output_html = "<div>" # Main container
|
429 |
+
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
|
430 |
+
|
431 |
+
for i, rec_data in enumerate(final_recommendations_data):
|
432 |
+
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
|
433 |
+
|
434 |
+
explanation = generate_saudi_explanation(
|
435 |
+
rec_data['movie_info']['title'],
|
436 |
+
rec_data['seed_movie_title'],
|
437 |
+
rec_data['seed_movie_context']
|
438 |
+
)
|
439 |
+
|
440 |
+
poster_url = rec_data['movie_info']['poster_path']
|
441 |
+
if not poster_url or "placeholder.com" in poster_url: # Use a default if no poster
|
442 |
+
poster_url = f"https://via.placeholder.com/300x450.png?text={rec_data['movie_info']['title'].replace(' ', '+')}"
|
443 |
+
|
444 |
+
output_html += f"""
|
445 |
+
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px;">
|
446 |
+
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
|
447 |
+
<div style="text-align: right; direction: rtl; flex-grow: 1;">
|
448 |
+
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
|
449 |
+
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
|
450 |
+
<p style="font-size: 0.9em; color: #777; margin-top: 10px;"><em>يا وحش، رشحنا لك هذا الفيلم لأنك حبيت: <strong style="color:#555;">{rec_data['seed_movie_title']}</strong></em></p>
|
451 |
+
</div>
|
452 |
+
</div>
|
453 |
+
"""
|
454 |
+
output_html += "</div>"
|
455 |
+
return gr.HTML(output_html)
|
456 |
+
|
457 |
+
# --- Gradio Interface ---
|
458 |
+
css = """
|
459 |
+
body { font-family: 'Tajawal', sans-serif; }
|
460 |
+
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; }
|
461 |
+
footer { display: none !important; }
|
462 |
+
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 10px 20px !important; border-radius: 8px !important; }
|
463 |
+
.gr-button:hover { background-color: #a3002f !important; }
|
464 |
+
.gr-input { text-align: right !important; }
|
465 |
+
.gr-output { text-align: right !important; }
|
466 |
+
h1, h3 { color: #900c3f !important; }
|
467 |
+
"""
|
468 |
+
|
469 |
+
# Load data once when the script starts
|
470 |
+
data_loaded_successfully = load_all_data()
|
471 |
+
if data_loaded_successfully:
|
472 |
+
print("All user data loaded and preprocessed successfully.")
|
473 |
+
# Initialize LLM after data loading to ensure it happens on app startup if data is present
|
474 |
+
initialize_llm()
|
475 |
+
else:
|
476 |
+
print("Failed to load user data. The app might not function correctly.")
|
477 |
+
|
478 |
+
|
479 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink"), css=css) as iface:
|
480 |
+
gr.Markdown(
|
481 |
+
"""
|
482 |
+
<div style="text-align: center;">
|
483 |
+
<h1 style="color: #c70039; font-size: 2.5em;">🎬 رفيقك السينمائي 🍿</h1>
|
484 |
+
<p style="font-size: 1.2em; color: #555;">يا هلا بك يا سلمان! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
|
485 |
+
</div>
|
486 |
+
"""
|
487 |
+
)
|
488 |
+
|
489 |
+
recommend_button = gr.Button("يا سلمان، عطني توصيات أفلام!")
|
490 |
+
|
491 |
+
with gr.Column():
|
492 |
+
output_recommendations = gr.HTML(label="توصياتك النارية 🔥")
|
493 |
+
|
494 |
+
recommend_button.click(
|
495 |
+
fn=get_recommendations_for_salman,
|
496 |
+
inputs=[],
|
497 |
+
outputs=[output_recommendations]
|
498 |
+
)
|
499 |
+
|
500 |
+
gr.Markdown(
|
501 |
+
"""
|
502 |
+
<div style="text-align: center; margin-top: 30px; font-size: 0.9em; color: #777;">
|
503 |
+
<p>تم تطوير هذا النظام بواسطة الذكاء الاصطناعي مع لمسة شخصية من بياناتك في ليتربوكسد.</p>
|
504 |
+
<p>استمتع بالمشاهدة! 🎥</p>
|
505 |
+
</div>
|
506 |
+
"""
|
507 |
+
)
|
508 |
+
|
509 |
+
if __name__ == "__main__":
|
510 |
+
iface.launch(debug=True) # debug=True for local testing, remove for HF
|