Spaces:
Sleeping
Sleeping
File size: 27,098 Bytes
dd21ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import pandas as pd
import requests
from bs4 import BeautifulSoup
import os
import re
import random
import io # No longer needed for CSV data, but keep for other potential uses
from dotenv import load_dotenv
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import time # For adding slight delays if TMDB API rate limits are hit
# --- Configuration ---
load_dotenv() # Load environment variables from .env file for local testing
TMDB_API_KEY = os.environ.get("TMDB_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
BASE_TMDB_URL = "https://api.themoviedb.org/3"
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
NUM_RECOMMENDATIONS_TO_GENERATE = 20 # Generate more initially
NUM_RECOMMENDATIONS_TO_DISPLAY = 5 # Display top 5
MIN_RATING_FOR_SEED = 3.5
MIN_VOTE_COUNT_TMDB = 100 # Min votes on TMDB for a movie to be considered
# --- Global Variables for Data (Load once) ---
df_profile_global = None
df_comments_global = None
df_watchlist_global = None
df_reviews_global = None
df_diary_global = None
df_ratings_global = None
df_watched_global = None # This will be a consolidated df
uri_to_movie_map_global = {}
all_watched_titles_global = set()
watchlist_titles_global = set()
favorite_film_details_global = []
seed_movies_global = []
# LLM Pipeline (Load once)
llm_pipeline = None
llm_tokenizer = None
# --- Helper Functions ---
def clean_html(raw_html):
if pd.isna(raw_html) or raw_html is None:
return ""
# Add space before tags to handle cases like </b>text
text = str(raw_html)
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines
soup = BeautifulSoup(text, "html.parser")
return soup.get_text(separator=" ", strip=True)
def get_movie_uri_map(dfs_dict):
"""Creates a map from Letterboxd URI to (Name, Year)."""
uri_map = {}
# Order of preference for names/years if URIs are duplicated across files
# (though Name/Year should ideally be consistent for the same URI)
df_priority = ['reviews.csv', 'diary.csv', 'ratings.csv', 'watched.csv', 'watchlist.csv']
processed_uris = set()
for df_name in df_priority:
df = dfs_dict.get(df_name)
if df is not None and 'Letterboxd URI' in df.columns and 'Name' in df.columns and 'Year' in df.columns:
for _, row in df.iterrows():
uri = row['Letterboxd URI']
if pd.notna(uri) and uri not in processed_uris:
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
year = int(row['Year']) # Ensure year is int
uri_map[uri] = (str(row['Name']), year)
processed_uris.add(uri)
except ValueError:
# print(f"Warning: Could not parse year for {row['Name']} in {df_name}. Skipping URI map entry.")
pass # Or handle as an error/log
return uri_map
def load_all_data():
global df_profile_global, df_comments_global, df_watchlist_global, df_reviews_global
global df_diary_global, df_ratings_global, df_watched_global, uri_to_movie_map_global
global all_watched_titles_global, watchlist_titles_global, favorite_film_details_global, seed_movies_global
# --- Load DataFrames from CSV files ---
# IMPORTANT: Ensure these CSV files are uploaded to your Hugging Face Space root.
try:
df_profile_global = pd.read_csv("profile.csv")
df_comments_global = pd.read_csv("comments.csv")
df_watchlist_global = pd.read_csv("watchlist.csv")
df_reviews_global = pd.read_csv("reviews.csv")
df_diary_global = pd.read_csv("diary.csv")
df_ratings_global = pd.read_csv("ratings.csv")
# The 'watched.csv' you provided seems to be a log similar to diary, but without ratings.
# We'll primarily use diary, reviews, and ratings for watched history with ratings.
_df_watched_log = pd.read_csv("watched.csv") # Raw watched log
except FileNotFoundError as e:
print(f"ERROR: CSV file not found: {e}. Please ensure all CSV files are uploaded to the HF Space.")
return False # Indicate failure
dfs_for_uri_map = {
"reviews.csv": df_reviews_global,
"diary.csv": df_diary_global,
"ratings.csv": df_ratings_global,
"watched.csv": _df_watched_log, # from watched.csv
"watchlist.csv": df_watchlist_global
}
uri_to_movie_map_global = get_movie_uri_map(dfs_for_uri_map)
# --- Consolidate Watched History ---
# Combine diary, reviews, and ratings to get a comprehensive view of watched movies and their ratings/reviews
# Standardize column names for easier merging
df_diary_global.rename(columns={'Rating': 'Diary Rating'}, inplace=True)
df_reviews_global.rename(columns={'Rating': 'Review Rating', 'Review': 'Review Text'}, inplace=True)
df_ratings_global.rename(columns={'Rating': 'Simple Rating'}, inplace=True)
# Merge based on Letterboxd URI, Name, and Year (if URI is missing, try Name/Year)
# Start with reviews as it's richest
consolidated = df_reviews_global[['Letterboxd URI', 'Name', 'Year', 'Review Rating', 'Review Text', 'Watched Date']].copy()
consolidated.rename(columns={'Review Rating': 'Rating'}, inplace=True)
# Merge diary
diary_subset = df_diary_global[['Letterboxd URI', 'Name', 'Year', 'Diary Rating', 'Watched Date']].copy()
diary_subset.rename(columns={'Diary Rating': 'Rating_diary', 'Watched Date': 'Watched Date_diary'}, inplace=True)
consolidated = pd.merge(consolidated, diary_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_diary'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_diary'])
consolidated['Watched Date'] = consolidated['Watched Date'].fillna(consolidated['Watched Date_diary'])
consolidated.drop(columns=['Rating_diary', 'Watched Date_diary'], inplace=True)
# Merge simple ratings
ratings_subset = df_ratings_global[['Letterboxd URI', 'Name', 'Year', 'Simple Rating']].copy()
ratings_subset.rename(columns={'Simple Rating': 'Rating_simple'}, inplace=True)
consolidated = pd.merge(consolidated, ratings_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_simple'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_simple'])
consolidated.drop(columns=['Rating_simple'], inplace=True)
# Add movies from the raw watched.csv if they aren't already there (they won't have ratings from this source)
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
# Add a 'Watched' column to mark these, and merge, filling NaNs appropriately
watched_log_subset['from_watched_log'] = True
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False)
# Clean up and fill NAs
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64') # Handle potential non-numeric years
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Movies must have a name and year
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
df_watched_global = consolidated
# Populate all_watched_titles_global (Name, Year) tuples
all_watched_titles_global = set(zip(df_watched_global['Name'].astype(str), df_watched_global['Year'].astype(int)))
# Add from raw watched log as well
for _, row in _df_watched_log.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
all_watched_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError:
pass
# --- Process Watchlist ---
if df_watchlist_global is not None:
watchlist_titles_global = set()
for _, row in df_watchlist_global.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
watchlist_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError:
pass
# --- Process Favorite Films ---
favorite_film_details_global = []
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns:
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
if pd.notna(fav_uris_str):
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
for uri in fav_uris:
if uri in uri_to_movie_map_global:
name, year = uri_to_movie_map_global[uri]
# Try to find rating and review from consolidated watched data
match = df_watched_global[(df_watched_global['Name'] == name) & (df_watched_global['Year'] == year)]
rating = match['Rating'].iloc[0] if not match.empty and pd.notna(match['Rating'].iloc[0]) else None
review = match['Review Text'].iloc[0] if not match.empty and match['Review Text'].iloc[0] else ""
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
# --- Identify Seed Movies ---
# Start with favorites
seed_movies_global.extend(favorite_film_details_global)
# Add other highly-rated movies (non-favorites)
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED]
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav}
for _, row in highly_rated_df.iterrows():
if row['Letterboxd URI'] not in favorite_uris: # Avoid duplicates if already in favorites
seed_movies_global.append({
'name': row['Name'],
'year': row['Year'],
'rating': row['Rating'],
'review_text': row['Review Text'],
'uri': row['Letterboxd URI']
})
# Remove duplicates based on name and year, preferring entries with more info (e.g., from favorites)
temp_df = pd.DataFrame(seed_movies_global)
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True)
seed_movies_global = temp_df.to_dict('records')
random.shuffle(seed_movies_global) # Shuffle to get variety if we pick a subset
return True # Indicate success
def initialize_llm():
global llm_pipeline, llm_tokenizer
if llm_pipeline is None:
print(f"Initializing LLM: {MODEL_NAME}")
try:
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# For CPU, bfloat16 might not be supported, try float32 or default
# Adding device_map="auto" and load_in_8bit=True for potentially better memory management on CPU
# For Spaces CPU, bitsandbytes might not be ideal. Try without quantization first if issues arise.
# Remove load_in_8bit if it causes issues on standard CPU Space.
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16, # Use float16 for faster inference and less memory
device_map="auto", # Automatically maps to available device (CPU or GPU if available)
# load_in_8bit=True, # Quantization - might need bitsandbytes
trust_remote_code=True,
token=HF_TOKEN if HF_TOKEN else None
)
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=llm_tokenizer,
torch_dtype=torch.float16,
device_map="auto"
)
print("LLM Initialized Successfully.")
except Exception as e:
print(f"Error initializing LLM: {e}")
llm_pipeline = None # Ensure it's None if initialization fails
# --- TMDB API Functions ---
def search_tmdb_movie_details(title, year):
if not TMDB_API_KEY:
print("TMDB API Key not configured.")
return None
try:
search_url = f"{BASE_TMDB_URL}/search/movie"
params = {'api_key': TMDB_API_KEY, 'query': title, 'year': year, 'language': 'en-US'}
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
if results:
movie = results[0]
# Fetch genres using the /movie/{movie_id} endpoint to get full genre names
movie_details_url = f"{BASE_TMDB_URL}/movie/{movie['id']}"
details_params = {'api_key': TMDB_API_KEY, 'language': 'en-US'}
details_response = requests.get(movie_details_url, params=details_params)
details_response.raise_for_status()
movie_full_details = details_response.json()
return {
'id': movie.get('id'),
'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4],
'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'genres': [genre['name'] for genre in movie_full_details.get('genres', [])],
'vote_average': movie.get('vote_average'),
'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
}
time.sleep(0.2) # Small delay to respect API rate limits
except requests.RequestException as e:
print(f"Error searching TMDB for {title} ({year}): {e}")
except Exception as ex:
print(f"Unexpected error in search_tmdb_movie_details for {title} ({year}): {ex}")
return None
def get_tmdb_recommendations(movie_id, page=1):
if not TMDB_API_KEY:
print("TMDB API Key not configured.")
return []
recommendations = []
try:
rec_url = f"{BASE_TMDB_URL}/movie/{movie_id}/recommendations"
params = {'api_key': TMDB_API_KEY, 'page': page, 'language': 'en-US'}
response = requests.get(rec_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
for movie in results:
if movie.get('vote_count', 0) >= MIN_VOTE_COUNT_TMDB:
recommendations.append({
'id': movie.get('id'),
'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4] if movie.get('release_date') else "N/A",
'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'vote_average': movie.get('vote_average'),
'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
})
time.sleep(0.2) # Small delay
except requests.RequestException as e:
print(f"Error getting TMDB recommendations for movie ID {movie_id}: {e}")
except Exception as ex:
print(f"Unexpected error in get_tmdb_recommendations for movie ID {movie_id}: {ex}")
return recommendations
# --- LLM Explanation Generation ---
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
global llm_pipeline, llm_tokenizer
if llm_pipeline is None or llm_tokenizer is None:
return "للأسف، نموذج الذكاء الاصطناعي مو جاهز الحين. حاول مرة ثانية بعد شوي."
# Truncate long context to avoid overly long prompts
max_context_len = 200
if len(seed_movie_context) > max_context_len:
seed_movie_context_short = seed_movie_context[:max_context_len] + "..."
else:
seed_movie_context_short = seed_movie_context
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف. المستخدم أعجب بالفيلم "{seed_movie_title}".
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
بناءً على ذلك، نُرشح له فيلم "{recommended_movie_title}".
اكتب جملة أو جملتين باللهجة السعودية العامية، تشرح ليش ممكن يعجبه الفيلم الجديد "{recommended_movie_title}"، مع ربطها بالفيلم اللي عجبه "{seed_movie_title}". خلي كلامك وناسة ويشد الواحد وما يكون طويل. لا تذكر أبداً أنك نموذج لغوي أو ذكاء اصطناعي.
مثال للأسلوب المطلوب (لو الفيلم اللي عجبه "Mad Max: Fury Road" والفيلم المرشح "Dune"):
"يا طويل العمر، شفت كيف 'Mad Max: Fury Road' عجّبك بجوّه الصحراوي والأكشن اللي ما يوقّف؟ أجل اسمع، 'Dune' بيوديك لصحراء ثانية بس أعظم وأفخم، وقصة تحبس الأنفاس! شد حيلك وشوفه."
الآن، الفيلم الذي أعجب المستخدم هو: "{seed_movie_title}"
سبب إعجابه بالفيلم الأول (إذا متوفر): "{seed_movie_context_short}"
الفيلم المرشح: "{recommended_movie_title}"
اشرح باللهجة السعودية: [/INST]"""
try:
sequences = llm_pipeline(
prompt_template,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=llm_tokenizer.eos_token_id,
max_new_tokens=100 # Limit output length
)
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
# Further clean up if the model repeats parts of the prompt or adds unwanted prefixes
explanation = re.sub(r"^اشرح باللهجة السعودية:\s*", "", explanation, flags=re.IGNORECASE)
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
if not explanation or explanation.lower().startswith("أنت ناقد أفلام"): # Fallback if generation is poor
return f"شكلك بتنبسط على فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
return explanation
except Exception as e:
print(f"Error during LLM generation: {e}")
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
# --- Recommendation Logic ---
def get_recommendations_for_salman(progress=gr.Progress()):
if not TMDB_API_KEY:
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو موجود. الرجاء إضافته كـ Secret في Hugging Face Space.</p>"
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global]):
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بياناتك. تأكد من رفع ملفات CSV بشكل صحيح.</p>"
if llm_pipeline is None:
initialize_llm() # Attempt to initialize if not already
if llm_pipeline is None:
return "<p style='color:red; text-align:right;'>خطأ: فشل في تهيئة نموذج الذكاء الاصطناعي. حاول تحديث الصفحة.</p>"
progress(0.1, desc="جمعنا أفلامك المفضلة واللي قيمتها عالي...")
potential_recs = {} # Store as {tmdb_id: {'movie_info': ..., 'seed_movie': ..., 'seed_context': ...}}
# Limit the number of seed movies to process to avoid excessive API calls / long processing
seeds_to_process = seed_movies_global[:30] if len(seed_movies_global) > 30 else seed_movies_global
for i, seed_movie in enumerate(seeds_to_process):
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie['name']}")
seed_tmdb_details = search_tmdb_movie_details(seed_movie['name'], seed_movie['year'])
if seed_tmdb_details and seed_tmdb_details.get('id'):
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
for rec in tmdb_recs:
rec_tuple = (str(rec['title']), int(rec['year'])) # (Name, Year)
# Ensure rec_tuple elements are of correct type before comparison
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
if rec['id'] not in potential_recs: # Add if new, prioritizing first seed
potential_recs[rec['id']] = {
'movie_info': rec,
'seed_movie_title': seed_movie['name'],
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
}
# Simple content-based similarity as a fallback or supplement (Optional, can be complex)
# For now, primarily TMDB-based
if not potential_recs:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً. يمكن شفت كل شيء رهيب! 😉</p>"
# Sort recommendations (e.g., by popularity or a mix, or just randomize for now)
# Let's sort by TMDB popularity for now to get some generally well-regarded films
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
final_recommendations_data = []
# Take top N distinct recommendations
displayed_ids = set()
for rec_data in sorted_recs_list:
if len(final_recommendations_data) >= NUM_RECOMMENDATIONS_TO_DISPLAY:
break
if rec_data['movie_info']['id'] not in displayed_ids:
final_recommendations_data.append(rec_data)
displayed_ids.add(rec_data['movie_info']['id'])
if not final_recommendations_data:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. يمكن شفت كل شيء رهيب! 😉</p>"
output_html = "<div>" # Main container
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
for i, rec_data in enumerate(final_recommendations_data):
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
explanation = generate_saudi_explanation(
rec_data['movie_info']['title'],
rec_data['seed_movie_title'],
rec_data['seed_movie_context']
)
poster_url = rec_data['movie_info']['poster_path']
if not poster_url or "placeholder.com" in poster_url: # Use a default if no poster
poster_url = f"https://via.placeholder.com/300x450.png?text={rec_data['movie_info']['title'].replace(' ', '+')}"
output_html += f"""
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px;">
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
<div style="text-align: right; direction: rtl; flex-grow: 1;">
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
<p style="font-size: 0.9em; color: #777; margin-top: 10px;"><em>يا وحش، رشحنا لك هذا الفيلم لأنك حبيت: <strong style="color:#555;">{rec_data['seed_movie_title']}</strong></em></p>
</div>
</div>
"""
output_html += "</div>"
return gr.HTML(output_html)
# --- Gradio Interface ---
css = """
body { font-family: 'Tajawal', sans-serif; }
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; }
footer { display: none !important; }
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 10px 20px !important; border-radius: 8px !important; }
.gr-button:hover { background-color: #a3002f !important; }
.gr-input { text-align: right !important; }
.gr-output { text-align: right !important; }
h1, h3 { color: #900c3f !important; }
"""
# Load data once when the script starts
data_loaded_successfully = load_all_data()
if data_loaded_successfully:
print("All user data loaded and preprocessed successfully.")
# Initialize LLM after data loading to ensure it happens on app startup if data is present
initialize_llm()
else:
print("Failed to load user data. The app might not function correctly.")
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink"), css=css) as iface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1 style="color: #c70039; font-size: 2.5em;">🎬 رفيقك السينمائي 🍿</h1>
<p style="font-size: 1.2em; color: #555;">يا هلا بك يا سلمان! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
</div>
"""
)
recommend_button = gr.Button("يا سلمان، عطني توصيات أفلام!")
with gr.Column():
output_recommendations = gr.HTML(label="توصياتك النارية 🔥")
recommend_button.click(
fn=get_recommendations_for_salman,
inputs=[],
outputs=[output_recommendations]
)
gr.Markdown(
"""
<div style="text-align: center; margin-top: 30px; font-size: 0.9em; color: #777;">
<p>تم تطوير هذا النظام بواسطة الذكاء الاصطناعي مع لمسة شخصية من بياناتك في ليتربوكسد.</p>
<p>استمتع بالمشاهدة! 🎥</p>
</div>
"""
)
if __name__ == "__main__":
iface.launch(debug=True) # debug=True for local testing, remove for HF |