|
|
|
import gradio as gr
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image, ImageFilter
|
|
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation
|
|
import torchvision.transforms as T
|
|
|
|
|
|
seg_model_name = "nvidia/segformer-b0-finetuned-ade-512-512"
|
|
seg_processor = AutoImageProcessor.from_pretrained(seg_model_name)
|
|
seg_model = AutoModelForSemanticSegmentation.from_pretrained(seg_model_name)
|
|
|
|
|
|
depth_model_name = "Intel/dpt-hybrid-midas"
|
|
depth_processor = DPTFeatureExtractor.from_pretrained(depth_model_name)
|
|
depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name)
|
|
|
|
def process(image):
|
|
image = image.convert("RGB").resize((512, 512))
|
|
image_np = np.array(image)
|
|
|
|
|
|
inputs = seg_processor(images=image, return_tensors="pt")
|
|
with torch.no_grad():
|
|
logits = seg_model(**inputs).logits
|
|
upsampled_logits = torch.nn.functional.interpolate(
|
|
logits, size=image.size[::-1], mode="bilinear", align_corners=False
|
|
)
|
|
pred_mask = upsampled_logits.argmax(dim=1)[0]
|
|
foreground_mask = (pred_mask == 12).byte().cpu().numpy() * 255
|
|
|
|
|
|
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15))
|
|
mask_img = Image.fromarray(foreground_mask.astype(np.uint8)).convert("L")
|
|
gaussian_blur_result = Image.composite(image, blurred_image, mask_img)
|
|
|
|
|
|
inputs = depth_processor(images=image, return_tensors="pt")
|
|
with torch.no_grad():
|
|
depth = depth_model(**inputs).predicted_depth[0]
|
|
|
|
depth_resized = torch.nn.functional.interpolate(
|
|
depth.unsqueeze(0).unsqueeze(0), size=image.size[::-1], mode="bicubic", align_corners=False
|
|
).squeeze().cpu().numpy()
|
|
depth_norm = (depth_resized - depth_resized.min()) / (depth_resized.max() - depth_resized.min())
|
|
depth_norm = 1.0 - depth_norm
|
|
|
|
|
|
num_levels = 10
|
|
max_radius = 20
|
|
blurred_layers = []
|
|
for i in range(num_levels):
|
|
r = (i / (num_levels - 1)) * max_radius
|
|
blurred = image.filter(ImageFilter.GaussianBlur(radius=r))
|
|
blurred_layers.append(np.array(blurred, dtype=np.float32))
|
|
|
|
depth_indices = depth_norm * (num_levels - 1)
|
|
output = np.zeros_like(image_np, dtype=np.float32)
|
|
mask_np = np.array(mask_img)
|
|
|
|
for y in range(image_np.shape[0]):
|
|
for x in range(image_np.shape[1]):
|
|
if mask_np[y, x] > 128:
|
|
output[y, x] = image_np[y, x]
|
|
else:
|
|
d = depth_indices[y, x]
|
|
low = int(np.floor(d))
|
|
high = min(low + 1, num_levels - 1)
|
|
alpha = d - low
|
|
pixel = (1 - alpha) * blurred_layers[low][y, x] + alpha * blurred_layers[high][y, x]
|
|
output[y, x] = pixel
|
|
|
|
depth_blur_result = Image.fromarray(np.uint8(np.clip(output, 0, 255)))
|
|
|
|
return image, mask_img, gaussian_blur_result, depth_blur_result
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=process,
|
|
inputs=gr.Image(type="pil", label="Upload Image"),
|
|
outputs=[
|
|
gr.Image(type="pil", label="Original Image"),
|
|
gr.Image(type="pil", label="Foreground Mask"),
|
|
gr.Image(type="pil", label="Gaussian Background Blur"),
|
|
gr.Image(type="pil", label="Depth-Based Lens Blur")
|
|
],
|
|
title="Image Blur Effects Demo",
|
|
description="Upload an image to apply Gaussian background blur and depth-based lens blur using Hugging Face models."
|
|
)
|
|
|
|
iface.launch()
|
|
|