ritikpatel-asu commited on
Commit
6e49cf1
·
verified ·
1 Parent(s): 237dd89

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +92 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import gradio as gr
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image, ImageFilter
6
+ from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation
7
+ import torchvision.transforms as T
8
+
9
+ # Load segmentation model
10
+ seg_model_name = "nvidia/segformer-b0-finetuned-ade-512-512"
11
+ seg_processor = AutoImageProcessor.from_pretrained(seg_model_name)
12
+ seg_model = AutoModelForSemanticSegmentation.from_pretrained(seg_model_name)
13
+
14
+ # Load depth model
15
+ depth_model_name = "Intel/dpt-hybrid-midas"
16
+ depth_processor = DPTFeatureExtractor.from_pretrained(depth_model_name)
17
+ depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name)
18
+
19
+ def process(image):
20
+ image = image.convert("RGB").resize((512, 512))
21
+ image_np = np.array(image)
22
+
23
+ # --- Segmentation ---
24
+ inputs = seg_processor(images=image, return_tensors="pt")
25
+ with torch.no_grad():
26
+ logits = seg_model(**inputs).logits
27
+ upsampled_logits = torch.nn.functional.interpolate(
28
+ logits, size=image.size[::-1], mode="bilinear", align_corners=False
29
+ )
30
+ pred_mask = upsampled_logits.argmax(dim=1)[0]
31
+ foreground_mask = (pred_mask == 12).byte().cpu().numpy() * 255
32
+
33
+ # --- Gaussian Blur (Zoom Style) ---
34
+ blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15))
35
+ mask_img = Image.fromarray(foreground_mask.astype(np.uint8)).convert("L")
36
+ gaussian_blur_result = Image.composite(image, blurred_image, mask_img)
37
+
38
+ # --- Depth Estimation ---
39
+ inputs = depth_processor(images=image, return_tensors="pt")
40
+ with torch.no_grad():
41
+ depth = depth_model(**inputs).predicted_depth[0]
42
+
43
+ depth_resized = torch.nn.functional.interpolate(
44
+ depth.unsqueeze(0).unsqueeze(0), size=image.size[::-1], mode="bicubic", align_corners=False
45
+ ).squeeze().cpu().numpy()
46
+ depth_norm = (depth_resized - depth_resized.min()) / (depth_resized.max() - depth_resized.min())
47
+ depth_norm = 1.0 - depth_norm # Invert so farther = more blur
48
+
49
+ # --- Depth-Based Variable Blur ---
50
+ num_levels = 10
51
+ max_radius = 20
52
+ blurred_layers = []
53
+ for i in range(num_levels):
54
+ r = (i / (num_levels - 1)) * max_radius
55
+ blurred = image.filter(ImageFilter.GaussianBlur(radius=r))
56
+ blurred_layers.append(np.array(blurred, dtype=np.float32))
57
+
58
+ depth_indices = depth_norm * (num_levels - 1)
59
+ output = np.zeros_like(image_np, dtype=np.float32)
60
+ mask_np = np.array(mask_img)
61
+
62
+ for y in range(image_np.shape[0]):
63
+ for x in range(image_np.shape[1]):
64
+ if mask_np[y, x] > 128:
65
+ output[y, x] = image_np[y, x] # preserve foreground
66
+ else:
67
+ d = depth_indices[y, x]
68
+ low = int(np.floor(d))
69
+ high = min(low + 1, num_levels - 1)
70
+ alpha = d - low
71
+ pixel = (1 - alpha) * blurred_layers[low][y, x] + alpha * blurred_layers[high][y, x]
72
+ output[y, x] = pixel
73
+
74
+ depth_blur_result = Image.fromarray(np.uint8(np.clip(output, 0, 255)))
75
+
76
+ return image, mask_img, gaussian_blur_result, depth_blur_result
77
+
78
+ # Gradio Interface
79
+ iface = gr.Interface(
80
+ fn=process,
81
+ inputs=gr.Image(type="pil", label="Upload Image"),
82
+ outputs=[
83
+ gr.Image(type="pil", label="Original Image"),
84
+ gr.Image(type="pil", label="Foreground Mask"),
85
+ gr.Image(type="pil", label="Gaussian Background Blur"),
86
+ gr.Image(type="pil", label="Depth-Based Lens Blur")
87
+ ],
88
+ title="Image Blur Effects Demo",
89
+ description="Upload an image to apply Gaussian background blur and depth-based lens blur using Hugging Face models."
90
+ )
91
+
92
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch
4
+ torchvision
5
+ Pillow
6
+ tqdm