# app.py import gradio as gr import torch import numpy as np from PIL import Image, ImageFilter from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation import torchvision.transforms as T # Load segmentation model seg_model_name = "nvidia/segformer-b0-finetuned-ade-512-512" seg_processor = AutoImageProcessor.from_pretrained(seg_model_name) seg_model = AutoModelForSemanticSegmentation.from_pretrained(seg_model_name) # Load depth model depth_model_name = "Intel/dpt-hybrid-midas" depth_processor = DPTFeatureExtractor.from_pretrained(depth_model_name) depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name) def process(image): image = image.convert("RGB").resize((512, 512)) image_np = np.array(image) # --- Segmentation --- inputs = seg_processor(images=image, return_tensors="pt") with torch.no_grad(): logits = seg_model(**inputs).logits upsampled_logits = torch.nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False ) pred_mask = upsampled_logits.argmax(dim=1)[0] foreground_mask = (pred_mask == 12).byte().cpu().numpy() * 255 # --- Gaussian Blur (Zoom Style) --- blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15)) mask_img = Image.fromarray(foreground_mask.astype(np.uint8)).convert("L") gaussian_blur_result = Image.composite(image, blurred_image, mask_img) # --- Depth Estimation --- inputs = depth_processor(images=image, return_tensors="pt") with torch.no_grad(): depth = depth_model(**inputs).predicted_depth[0] depth_resized = torch.nn.functional.interpolate( depth.unsqueeze(0).unsqueeze(0), size=image.size[::-1], mode="bicubic", align_corners=False ).squeeze().cpu().numpy() depth_norm = (depth_resized - depth_resized.min()) / (depth_resized.max() - depth_resized.min()) depth_norm = 1.0 - depth_norm # Invert so farther = more blur # --- Depth-Based Variable Blur --- num_levels = 10 max_radius = 20 blurred_layers = [] for i in range(num_levels): r = (i / (num_levels - 1)) * max_radius blurred = image.filter(ImageFilter.GaussianBlur(radius=r)) blurred_layers.append(np.array(blurred, dtype=np.float32)) depth_indices = depth_norm * (num_levels - 1) output = np.zeros_like(image_np, dtype=np.float32) mask_np = np.array(mask_img) for y in range(image_np.shape[0]): for x in range(image_np.shape[1]): if mask_np[y, x] > 128: output[y, x] = image_np[y, x] # preserve foreground else: d = depth_indices[y, x] low = int(np.floor(d)) high = min(low + 1, num_levels - 1) alpha = d - low pixel = (1 - alpha) * blurred_layers[low][y, x] + alpha * blurred_layers[high][y, x] output[y, x] = pixel depth_blur_result = Image.fromarray(np.uint8(np.clip(output, 0, 255))) return image, mask_img, gaussian_blur_result, depth_blur_result # Gradio Interface iface = gr.Interface( fn=process, inputs=gr.Image(type="pil", label="Upload Image"), outputs=[ gr.Image(type="pil", label="Original Image"), gr.Image(type="pil", label="Foreground Mask"), gr.Image(type="pil", label="Gaussian Background Blur"), gr.Image(type="pil", label="Depth-Based Lens Blur") ], title="Image Blur Effects Demo", description="Upload an image to apply Gaussian background blur and depth-based lens blur using Hugging Face models." ) iface.launch()