File size: 22,518 Bytes
1b4bf2d
 
 
02fc469
1b4bf2d
02fc469
 
1b4bf2d
 
02fc469
 
1b4bf2d
620f836
 
02fc469
2da7fa0
 
 
 
02fc469
 
 
 
 
 
 
1b4bf2d
02fc469
1b4bf2d
 
 
02fc469
 
 
 
 
2da7fa0
 
 
 
 
 
02fc469
 
 
2ea78e5
1b4bf2d
02fc469
df9085f
02fc469
 
 
 
 
 
 
5391728
1b4bf2d
02fc469
 
 
 
 
 
 
 
 
 
 
1b4bf2d
02fc469
1b4bf2d
5391728
02fc469
 
 
 
 
 
 
 
 
5391728
02fc469
 
 
 
 
1b4bf2d
02fc469
 
1b4bf2d
02fc469
 
5391728
02fc469
 
 
 
1b4bf2d
 
02fc469
1b4bf2d
5391728
02fc469
 
 
 
 
1b4bf2d
02fc469
1b4bf2d
 
 
 
 
02fc469
1b4bf2d
 
 
 
5391728
1b4bf2d
02fc469
1b4bf2d
 
 
02fc469
1b4bf2d
 
 
 
 
5391728
 
 
1b4bf2d
02fc469
1b4bf2d
 
 
 
 
 
5391728
02fc469
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4bf2d
 
02fc469
1b4bf2d
02fc469
1b4bf2d
5391728
02fc469
 
 
 
5391728
 
1b4bf2d
5391728
02fc469
1b4bf2d
02fc469
1b4bf2d
02fc469
1b4bf2d
02fc469
 
 
1b4bf2d
02fc469
1b4bf2d
 
 
5391728
02fc469
 
 
 
df9085f
02fc469
5391728
02fc469
 
 
 
 
 
 
1b4bf2d
02fc469
 
 
2da7fa0
02fc469
 
 
 
 
1b4bf2d
2da7fa0
 
 
 
 
 
 
 
5391728
02fc469
 
 
 
 
2da7fa0
5391728
02fc469
2da7fa0
02fc469
5391728
02fc469
 
 
2da7fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fc469
 
 
 
 
 
 
 
 
 
 
 
 
2da7fa0
 
02fc469
2da7fa0
02fc469
2da7fa0
 
02fc469
1b4bf2d
2da7fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5391728
02fc469
 
 
2da7fa0
02fc469
 
 
2da7fa0
 
02fc469
 
 
 
1b4bf2d
2da7fa0
 
df9085f
 
 
2da7fa0
df9085f
2da7fa0
 
 
 
 
df9085f
 
1b4bf2d
02fc469
 
5391728
02fc469
 
 
 
 
2da7fa0
5391728
02fc469
 
 
 
2da7fa0
 
02fc469
 
 
 
 
5391728
02fc469
5391728
02fc469
 
 
 
 
 
 
 
 
 
5391728
2da7fa0
 
02fc469
2da7fa0
02fc469
 
 
 
 
 
2da7fa0
02fc469
 
 
2da7fa0
02fc469
2da7fa0
02fc469
 
2da7fa0
02fc469
 
2da7fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5391728
2da7fa0
1b4bf2d
02fc469
 
 
 
1b4bf2d
 
c9e1414
 
02fc469
2da7fa0
02fc469
c9e1414
02fc469
c9e1414
 
 
 
 
02fc469
c9e1414
 
 
 
 
 
 
2fd872a
c9e1414
 
 
 
 
 
 
14f7fae
c9e1414
 
 
 
 
 
14f7fae
c9e1414
 
 
 
 
 
 
 
2fd872a
c9e1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3398b2c
c9e1414
 
 
 
02fc469
 
c9e1414
02fc469
3398b2c
02fc469
2da7fa0
c9e1414
 
2da7fa0
 
 
c9e1414
3398b2c
 
c9e1414
2da7fa0
c9e1414
 
 
3398b2c
c9e1414
3398b2c
2da7fa0
3398b2c
c9e1414
 
2da7fa0
c9e1414
2da7fa0
c9e1414
 
 
2da7fa0
c9e1414
 
 
 
 
 
 
 
 
2da7fa0
 
c9e1414
2da7fa0
3398b2c
c9e1414
 
 
1b4bf2d
c9e1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2da7fa0
c9e1414
2da7fa0
c9e1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2da7fa0
 
c9e1414
2da7fa0
 
c9e1414
 
3398b2c
c9e1414
 
 
1b4bf2d
c9e1414
1b4bf2d
3398b2c
c9e1414
 
02fc469
c9e1414
2da7fa0
1b4bf2d
3398b2c
c9e1414
02fc469
c9e1414
2da7fa0
1b4bf2d
3398b2c
02fc469
1b4bf2d
02fc469
1b4bf2d
 
 
 
 
2fd872a
1b4bf2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging

# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain.chains import LLMChain, RetrievalQA, ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub

# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
    raise ValueError("HuggingFace token not found in environment variables")

# Initialize HuggingFace LLM
llm = HuggingFaceHub(
    repo_id="meta-llama/Llama-3.1-8B-Instruct",
    huggingfacehub_api_token=HF_TOKEN,
    model_kwargs={"temperature": 0.7, "max_length": 512}
)

# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

class MCPMessage:
    """Model Context Protocol Message Structure"""
    def __init__(self, sender: str, receiver: str, msg_type: str,
                 trace_id: str = None, payload: Dict = None):
        self.sender = sender
        self.receiver = receiver
        self.type = msg_type
        self.trace_id = trace_id or str(uuid.uuid4())
        self.payload = payload or {}
        self.timestamp = datetime.now().isoformat()
    
    def to_dict(self):
        return {
            "sender": self.sender,
            "receiver": self.receiver,
            "type": self.type,
            "trace_id": self.trace_id,
            "payload": self.payload,
            "timestamp": self.timestamp
        }

class MessageBus:
    """In-memory message bus for MCP communication"""
    def __init__(self):
        self.messages = []
        self.subscribers = {}
    
    def publish(self, message: MCPMessage):
        """Publish message to the bus"""
        self.messages.append(message)
        logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
        
        # Notify subscribers
        if message.receiver in self.subscribers:
            for callback in self.subscribers[message.receiver]:
                callback(message)
    
    def subscribe(self, agent_name: str, callback):
        """Subscribe agent to receive messages"""
        if agent_name not in self.subscribers:
            self.subscribers[agent_name] = []
        self.subscribers[agent_name].append(callback)

# Global message bus
message_bus = MessageBus()

class IngestionAgent:
    """Agent responsible for document parsing and preprocessing"""
    
    def __init__(self, message_bus: MessageBus):
        self.name = "IngestionAgent"
        self.message_bus = message_bus
        self.message_bus.subscribe(self.name, self.handle_message)
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200
        )
    
    def handle_message(self, message: MCPMessage):
        """Handle incoming MCP messages"""
        if message.type == "INGESTION_REQUEST":
            self.process_documents(message)
    
    def parse_pdf(self, file_path: str) -> str:
        """Parse PDF document"""
        try:
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                text = ""
                for page in pdf_reader.pages:
                    text += page.extract_text()
                return text
        except Exception as e:
            logger.error(f"Error parsing PDF: {e}")
            return ""
    
    def parse_pptx(self, file_path: str) -> str:
        """Parse PPTX document"""
        try:
            prs = Presentation(file_path)
            text = ""
            for slide in prs.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        text += shape.text + "\n"
            return text
        except Exception as e:
            logger.error(f"Error parsing PPTX: {e}")
            return ""
    
    def parse_csv(self, file_path: str) -> str:
        """Parse CSV document"""
        try:
            df = pd.read_csv(file_path)
            return df.to_string()
        except Exception as e:
            logger.error(f"Error parsing CSV: {e}")
            return ""
    
    def parse_docx(self, file_path: str) -> str:
        """Parse DOCX document"""
        try:
            doc = DocxDocument(file_path)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            logger.error(f"Error parsing DOCX: {e}")
            return ""
    
    def parse_txt(self, file_path: str) -> str:
        """Parse TXT/Markdown document"""
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
        except Exception as e:
            logger.error(f"Error parsing TXT: {e}")
            return ""
    
    def process_documents(self, message: MCPMessage):
        """Process uploaded documents"""
        files = message.payload.get("files", [])
        processed_docs = []
        
        for file_path in files:
            file_ext = os.path.splitext(file_path)[1].lower()
            
            # Parse document based on file type
            if file_ext == '.pdf':
                text = self.parse_pdf(file_path)
            elif file_ext == '.pptx':
                text = self.parse_pptx(file_path)
            elif file_ext == '.csv':
                text = self.parse_csv(file_path)
            elif file_ext == '.docx':
                text = self.parse_docx(file_path)
            elif file_ext in ['.txt', '.md']:
                text = self.parse_txt(file_path)
            else:
                logger.warning(f"Unsupported file type: {file_ext}")
                continue
            
            if text:
                # Split text into chunks
                chunks = self.text_splitter.split_text(text)
                docs = [Document(page_content=chunk, metadata={"source": file_path}) 
                        for chunk in chunks]
                processed_docs.extend(docs)
        
        # Send processed documents to RetrievalAgent
        response = MCPMessage(
            sender=self.name,
            receiver="RetrievalAgent",
            msg_type="INGESTION_COMPLETE",
            trace_id=message.trace_id,
            payload={"documents": processed_docs}
        )
        self.message_bus.publish(response)

class RetrievalAgent:
    """Agent responsible for embedding and semantic retrieval using LangChain"""
    
    def __init__(self, message_bus: MessageBus):
        self.name = "RetrievalAgent"
        self.message_bus = message_bus
        self.message_bus.subscribe(self.name, self.handle_message)
        self.vector_store = None
        self.retriever = None
        self.qa_chain = None
        self.conversation_chain = None
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key="answer"
        )
    
    def handle_message(self, message: MCPMessage):
        """Handle incoming MCP messages"""
        if message.type == "INGESTION_COMPLETE":
            self.create_vector_store(message)
        elif message.type == "RETRIEVAL_REQUEST":
            self.process_query(message)
    
    def create_vector_store(self, message: MCPMessage):
        """Create vector store and chains from processed documents"""
        documents = message.payload.get("documents", [])
        
        if documents:
            try:
                self.vector_store = FAISS.from_documents(documents, embeddings)
                self.retriever = self.vector_store.as_retriever(
                    search_type="similarity",
                    search_kwargs={"k": 3}
                )
                
                # Create QA chain
                self.qa_chain = RetrievalQA.from_chain_type(
                    llm=llm,
                    chain_type="stuff",
                    retriever=self.retriever,
                    return_source_documents=True,
                    verbose=True
                )
                
                # Create conversational chain
                self.conversation_chain = ConversationalRetrievalChain.from_llm(
                    llm=llm,
                    retriever=self.retriever,
                    memory=self.memory,
                    return_source_documents=True,
                    verbose=True
                )
                
                logger.info(f"Vector store and chains created with {len(documents)} documents")
                
                # Notify completion
                response = MCPMessage(
                    sender=self.name,
                    receiver="CoordinatorAgent",
                    msg_type="VECTORSTORE_READY",
                    trace_id=message.trace_id,
                    payload={"status": "ready"}
                )
                self.message_bus.publish(response)
            except Exception as e:
                logger.error(f"Error creating vector store: {e}")
    
    def process_query(self, message: MCPMessage):
        """Process query using conversational retrieval chain"""
        query = message.payload.get("query", "")
        use_conversation = message.payload.get("use_conversation", True)
        
        if not self.qa_chain or not query:
            return
        
        try:
            if use_conversation and self.conversation_chain:
                # Use conversational chain for context-aware responses
                result = self.conversation_chain({"question": query})
                answer = result["answer"]
                source_docs = result.get("source_documents", [])
            else:
                # Use simple QA chain
                result = self.qa_chain({"query": query})
                answer = result["result"]
                source_docs = result.get("source_documents", [])
            
            # Format sources
            sources = []
            for doc in source_docs:
                sources.append({
                    "content": doc.page_content[:200] + "...",
                    "source": doc.metadata.get("source", "Unknown")
                })
            
            response = MCPMessage(
                sender=self.name,
                receiver="CoordinatorAgent",
                msg_type="CHAIN_RESPONSE",
                trace_id=message.trace_id,
                payload={
                    "query": query,
                    "answer": answer,
                    "sources": sources
                }
            )
            self.message_bus.publish(response)
            
        except Exception as e:
            logger.error(f"Error processing query: {e}")
            # Send error response
            response = MCPMessage(
                sender=self.name,
                receiver="CoordinatorAgent",
                msg_type="CHAIN_RESPONSE",
                trace_id=message.trace_id,
                payload={
                    "query": query,
                    "answer": f"Error processing query: {str(e)}",
                    "sources": []
                }
            )
            self.message_bus.publish(response)

class CoordinatorAgent:
    """Coordinator agent that orchestrates the entire workflow"""
    
    def __init__(self, message_bus: MessageBus):
        self.name = "CoordinatorAgent"
        self.message_bus = message_bus
        self.message_bus.subscribe(self.name, self.handle_message)
        self.vector_store_ready = False
        self.current_response = None
    
    def handle_message(self, message: MCPMessage):
        """Handle incoming MCP messages"""
        if message.type == "VECTORSTORE_READY":
            self.vector_store_ready = True
        elif message.type == "CHAIN_RESPONSE":
            self.current_response = message.payload
    
    def process_files(self, files):
        """Process uploaded files"""
        if not files:
            return "No files uploaded."
        
        file_paths = [file.name for file in files]
        
        # Send ingestion request
        message = MCPMessage(
            sender=self.name,
            receiver="IngestionAgent",
            msg_type="INGESTION_REQUEST",
            payload={"files": file_paths}
        )
        self.message_bus.publish(message)
        
        return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
    
    def handle_query(self, query: str):
        """Handle user query using LangChain chains"""
        if not self.vector_store_ready:
            return "Please upload and process documents first."
        
        # Send retrieval request
        message = MCPMessage(
            sender=self.name,
            receiver="RetrievalAgent",
            msg_type="RETRIEVAL_REQUEST",
            payload={"query": query, "use_conversation": True}
        )
        self.message_bus.publish(message)
        
        # Wait for response
        import time
        timeout = 30  # seconds
        start_time = time.time()
        
        while not self.current_response and (time.time() - start_time) < timeout:
            time.sleep(0.1)
        
        if self.current_response:
            response = self.current_response
            self.current_response = None  # Reset for next query
            
            # Format response with sources
            answer = response.get("answer", "No answer generated.")
            sources = response.get("sources", [])
            
            if sources:
                source_text = "\n\n**Sources:**\n"
                for i, source in enumerate(sources, 1):
                    source_text += f"{i}. {source['source']}: {source['content']}\n"
                answer += source_text
            
            return answer
        else:
            return "Timeout: No response received from the system."

# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)

def create_interface():
    """Create ChatGPT-style Gradio interface"""
    
    with gr.Blocks(
        theme=gr.themes.Base(),
        css="""
        /* Dark theme styling */
        .gradio-container {
            background-color: #1a1a1a !important;
            color: #ffffff !important;
            height: 100vh !important;
            max-width: none !important;
            padding: 0 !important;
        }
        
        /* Main container */
        .main-container {
            display: flex;
            flex-direction: column;
            height: 100vh;
            background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
        }
        
        /* Header */
        .header {
            background: rgba(255, 193, 7, 0.1);
            border-bottom: 1px solid rgba(255, 193, 7, 0.2);
            padding: 1rem 2rem;
            backdrop-filter: blur(10px);
        }
        
        .header h1 {
            color: #ffc107;
            margin: 0;
            font-size: 1.5rem;
            font-weight: 600;
        }
        
        .header p {
            color: #cccccc;
            margin: 0.25rem 0 0 0;
            font-size: 0.9rem;
        }
        
        /* Chat area */
        .chat-container {
            flex: 1;
            display: flex;
            flex-direction: column;
            max-width: 800px;
            margin: 0 auto;
            width: 100%;
            padding: 1rem;
        }
        
        /* Chatbot styling */
        .gradio-chatbot {
            flex: 1 !important;
            background: transparent !important;
            border: none !important;
            margin-bottom: 1rem;
        }
        
        /* Input area */
        .input-area {
            background: rgba(45, 45, 45, 0.6);
            border-radius: 16px;
            padding: 1rem;
            border: 1px solid rgba(255, 193, 7, 0.2);
            backdrop-filter: blur(10px);
        }
        
        /* File upload */
        .upload-area {
            background: rgba(255, 193, 7, 0.05);
            border: 2px dashed rgba(255, 193, 7, 0.3);
            border-radius: 12px;
            padding: 1rem;
            margin-bottom: 1rem;
            transition: all 0.3s ease;
        }
        
        /* Buttons */
        .primary-btn {
            background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
            color: #000000 !important;
            border: none !important;
            border-radius: 8px !important;
            font-weight: 600 !important;
        }
        
        /* Text inputs */
        .gradio-textbox input, .gradio-textbox textarea {
            background: rgba(45, 45, 45, 0.8) !important;
            color: #ffffff !important;
            border: 1px solid rgba(255, 193, 7, 0.2) !important;
            border-radius: 8px !important;
        }
        
        /* Processing indicator */
        .processing-indicator {
            background: rgba(255, 193, 7, 0.1);
            border: 1px solid rgba(255, 193, 7, 0.3);
            border-radius: 8px;
            padding: 0.75rem;
            margin: 0.5rem 0;
            color: #ffc107;
            text-align: center;
        }
        """,
        title="Agentic RAG Assistant"
    ) as iface:

        # Header
        with gr.Row():
            with gr.Column():
                gr.HTML("""
                <div class="header">
                    <h1>πŸ€– Agentic RAG Assistant</h1>
                    <p>Upload documents and ask questions - powered by LangChain Multi-Agent Architecture</p>
                </div>
                """)

        # Main chat container
        with gr.Row():
            with gr.Column():
                
                # Chatbot
                chatbot = gr.Chatbot(
                    value=[],
                    height=500,
                    show_copy_button=True
                )
                
                # Input area
                with gr.Column():
                    
                    # File upload
                    file_upload = gr.File(
                        file_count="multiple",
                        file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
                        label="Upload Documents"
                    )
                    
                    # Processing status
                    processing_status = gr.HTML(visible=False)
                    
                    # Message input row
                    with gr.Row():
                        msg_input = gr.Textbox(
                            placeholder="Upload documents above, then ask your questions here...",
                            label="Message",
                            scale=4
                        )
                        send_btn = gr.Button("Send", scale=1, variant="primary")

        # State to track document processing
        doc_processed = gr.State(False)
        
        # Event handlers
        def handle_file_upload(files):
            if not files:
                return gr.update(visible=False), False
            
            # Show processing indicator
            processing_html = f"""
            <div class="processing-indicator">
                πŸ“„ Processing {len(files)} documents... Please wait.
            </div>
            """
            
            # Process files
            try:
                result = coordinator_agent.process_files(files)
                
                # Wait a moment for processing to complete
                import time
                time.sleep(3)
                
                success_html = """
                <div style="background: rgba(76, 175, 80, 0.1); border: 1px solid rgba(76, 175, 80, 0.3); 
                           border-radius: 8px; padding: 0.75rem; color: #4caf50; text-align: center;">
                    βœ… Documents processed successfully! You can now ask questions.
                </div>
                """
                return gr.update(value=success_html, visible=True), True
                
            except Exception as e:
                error_html = f"""
                <div style="background: rgba(244, 67, 54, 0.1); border: 1px solid rgba(244, 67, 54, 0.3); 
                           border-radius: 8px; padding: 0.75rem; color: #f44336; text-align: center;">
                    ❌ Error processing documents: {str(e)}
                </div>
                """
                return gr.update(value=error_html, visible=True), False

        def respond(message, history, doc_ready):
            if not doc_ready:
                return history + [["Please upload and process documents first.", None]], ""
            
            if not message.strip():
                return history, message
            
            # Get response from coordinator
            response = coordinator_agent.handle_query(message)
            
            # Add to chat history
            history.append([message, response])
            
            return history, ""

        # File upload triggers processing
        file_upload.change(
            handle_file_upload,
            inputs=[file_upload],
            outputs=[processing_status, doc_processed]
        )

        # Send message
        send_btn.click(
            respond,
            inputs=[msg_input, chatbot, doc_processed],
            outputs=[chatbot, msg_input]
        )

        msg_input.submit(
            respond,
            inputs=[msg_input, chatbot, doc_processed],
            outputs=[chatbot, msg_input]
        )

    return iface

# Launch the application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860
    )