Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,133 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import tempfile
|
4 |
-
import uuid
|
5 |
-
from datetime import datetime
|
6 |
-
from typing import List, Dict, Any, Optional
|
7 |
import json
|
|
|
8 |
import asyncio
|
9 |
-
from
|
|
|
10 |
import logging
|
11 |
|
12 |
-
#
|
13 |
-
import
|
14 |
-
import pandas as pd
|
15 |
-
from docx import Document
|
16 |
-
from pptx import Presentation
|
17 |
-
import markdown
|
18 |
-
|
19 |
-
# ML/AI imports
|
20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
from langchain.embeddings import HuggingFaceEmbeddings
|
22 |
from langchain.vectorstores import FAISS
|
23 |
-
from langchain.
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
#
|
27 |
logging.basicConfig(level=logging.INFO)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
-
# Get
|
31 |
-
HF_TOKEN = os.getenv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# MCP Message Structure
|
34 |
-
@dataclass
|
35 |
class MCPMessage:
|
36 |
-
|
37 |
-
receiver: str
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
self.timestamp = datetime.now().isoformat()
|
46 |
|
47 |
def to_dict(self):
|
48 |
-
return
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def __init__(self):
|
53 |
-
self.
|
54 |
self.subscribers = {}
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# Re-queue if not for this agent
|
66 |
-
await self.message_queue.put(message)
|
67 |
|
68 |
-
# Global
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
def __init__(self, name: str):
|
74 |
-
self.name = name
|
75 |
-
self.mcp = mcp
|
76 |
-
|
77 |
-
async def send_mcp_message(self, receiver: str, msg_type: str, payload: Dict[str, Any], trace_id: str):
|
78 |
-
message = MCPMessage(
|
79 |
-
sender=self.name,
|
80 |
-
receiver=receiver,
|
81 |
-
type=msg_type,
|
82 |
-
trace_id=trace_id,
|
83 |
-
payload=payload
|
84 |
-
)
|
85 |
-
await self.mcp.send_message(message)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
class IngestionAgent(BaseAgent):
|
92 |
-
def __init__(self):
|
93 |
-
super().__init__("IngestionAgent")
|
94 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
95 |
chunk_size=1000,
|
96 |
-
chunk_overlap=200
|
97 |
-
length_function=len,
|
98 |
)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
100 |
def parse_pdf(self, file_path: str) -> str:
|
101 |
-
"""Parse PDF
|
102 |
try:
|
103 |
with open(file_path, 'rb') as file:
|
104 |
pdf_reader = PyPDF2.PdfReader(file)
|
105 |
text = ""
|
106 |
for page in pdf_reader.pages:
|
107 |
-
text += page.extract_text()
|
108 |
return text
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error parsing PDF: {e}")
|
111 |
return ""
|
112 |
|
113 |
-
def parse_docx(self, file_path: str) -> str:
|
114 |
-
"""Parse DOCX file and extract text"""
|
115 |
-
try:
|
116 |
-
doc = Document(file_path)
|
117 |
-
text = ""
|
118 |
-
for paragraph in doc.paragraphs:
|
119 |
-
text += paragraph.text + "\n"
|
120 |
-
return text
|
121 |
-
except Exception as e:
|
122 |
-
logger.error(f"Error parsing DOCX: {e}")
|
123 |
-
return ""
|
124 |
-
|
125 |
def parse_pptx(self, file_path: str) -> str:
|
126 |
-
"""Parse PPTX
|
127 |
try:
|
128 |
prs = Presentation(file_path)
|
129 |
text = ""
|
130 |
-
for
|
131 |
-
text += f"Slide {slide_num}:\n"
|
132 |
for shape in slide.shapes:
|
133 |
if hasattr(shape, "text"):
|
134 |
text += shape.text + "\n"
|
135 |
-
text += "\n"
|
136 |
return text
|
137 |
except Exception as e:
|
138 |
logger.error(f"Error parsing PPTX: {e}")
|
139 |
return ""
|
140 |
|
141 |
def parse_csv(self, file_path: str) -> str:
|
142 |
-
"""Parse CSV
|
143 |
try:
|
144 |
df = pd.read_csv(file_path)
|
145 |
return df.to_string()
|
@@ -147,584 +135,415 @@ class IngestionAgent(BaseAgent):
|
|
147 |
logger.error(f"Error parsing CSV: {e}")
|
148 |
return ""
|
149 |
|
150 |
-
def
|
151 |
-
"""Parse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
try:
|
153 |
with open(file_path, 'r', encoding='utf-8') as file:
|
154 |
-
|
155 |
-
# If markdown, convert to plain text
|
156 |
-
if file_path.lower().endswith('.md'):
|
157 |
-
content = markdown.markdown(content)
|
158 |
-
return content
|
159 |
except Exception as e:
|
160 |
-
logger.error(f"Error parsing TXT
|
161 |
return ""
|
162 |
|
163 |
-
|
164 |
-
"""Process uploaded documents
|
165 |
-
|
|
|
166 |
|
167 |
for file_path in files:
|
168 |
file_ext = os.path.splitext(file_path)[1].lower()
|
169 |
-
filename = os.path.basename(file_path)
|
170 |
|
171 |
-
# Parse based on file
|
172 |
if file_ext == '.pdf':
|
173 |
-
|
174 |
-
elif file_ext == '.docx':
|
175 |
-
content = self.parse_docx(file_path)
|
176 |
elif file_ext == '.pptx':
|
177 |
-
|
178 |
elif file_ext == '.csv':
|
179 |
-
|
|
|
|
|
180 |
elif file_ext in ['.txt', '.md']:
|
181 |
-
|
182 |
else:
|
183 |
logger.warning(f"Unsupported file type: {file_ext}")
|
184 |
continue
|
185 |
|
186 |
-
if
|
187 |
-
# Split
|
188 |
-
chunks = self.text_splitter.split_text(
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
doc = LCDocument(
|
193 |
-
page_content=chunk,
|
194 |
-
metadata={
|
195 |
-
"source": filename,
|
196 |
-
"chunk_id": i,
|
197 |
-
"file_type": file_ext
|
198 |
-
}
|
199 |
-
)
|
200 |
-
all_documents.append(doc)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
210 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
self.vector_store = None
|
212 |
|
213 |
-
|
214 |
-
"""
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
else:
|
220 |
-
logger.warning("No documents to create vector store")
|
221 |
-
except Exception as e:
|
222 |
-
logger.error(f"Error creating vector store: {e}")
|
223 |
|
224 |
-
|
225 |
-
"""
|
226 |
-
|
227 |
-
return []
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
"
|
238 |
-
"
|
239 |
-
|
240 |
-
"
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
self.
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
def
|
258 |
-
"""
|
259 |
-
|
260 |
-
|
261 |
-
for chunk in context_chunks
|
262 |
-
])
|
263 |
|
264 |
-
|
|
|
|
|
|
|
|
|
265 |
|
266 |
Context:
|
267 |
{context_text}
|
268 |
|
269 |
Question: {query}
|
270 |
|
271 |
-
Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to fully answer the question, please mention what information is available and what might be missing.
|
272 |
-
|
273 |
Answer:"""
|
274 |
-
|
275 |
-
return prompt
|
276 |
-
|
277 |
-
async def generate_response(self, query: str, context_chunks: List[Dict], trace_id: str) -> str:
|
278 |
-
"""Generate response using LLM"""
|
279 |
try:
|
280 |
-
|
281 |
-
|
282 |
-
# Generate response using HuggingFace Inference
|
283 |
-
response = self.client.text_generation(
|
284 |
prompt,
|
285 |
max_new_tokens=512,
|
286 |
temperature=0.7,
|
287 |
-
|
288 |
-
return_full_text=False
|
289 |
)
|
290 |
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
except Exception as e:
|
293 |
logger.error(f"Error generating response: {e}")
|
294 |
-
return f"I apologize, but I encountered an error while generating the response: {str(e)}"
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
def __init__(self):
|
299 |
-
super().__init__("CoordinatorAgent")
|
300 |
-
self.ingestion_agent = IngestionAgent()
|
301 |
-
self.retrieval_agent = RetrievalAgent()
|
302 |
-
self.llm_agent = LLMResponseAgent()
|
303 |
-
self.documents_processed = False
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
await self.send_mcp_message(
|
312 |
-
"IngestionAgent",
|
313 |
-
"DOCUMENT_INGESTION_REQUEST",
|
314 |
-
{"files": files},
|
315 |
-
trace_id
|
316 |
-
)
|
317 |
-
|
318 |
-
documents = await self.ingestion_agent.process_documents(files, trace_id)
|
319 |
-
|
320 |
-
await self.send_mcp_message(
|
321 |
-
"RetrievalAgent",
|
322 |
-
"VECTOR_STORE_CREATE_REQUEST",
|
323 |
-
{"documents": len(documents)},
|
324 |
-
trace_id
|
325 |
-
)
|
326 |
-
|
327 |
-
# Step 2: Create vector store
|
328 |
-
await self.retrieval_agent.create_vector_store(documents, trace_id)
|
329 |
-
|
330 |
-
self.documents_processed = True
|
331 |
-
|
332 |
-
return f"Successfully processed {len(documents)} document chunks from {len(files)} files."
|
333 |
-
|
334 |
-
except Exception as e:
|
335 |
-
logger.error(f"Error in document processing: {e}")
|
336 |
-
return f"Error processing documents: {str(e)}"
|
337 |
|
338 |
-
|
339 |
-
"""
|
340 |
-
if
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
# Step 2: LLM Response
|
357 |
-
await self.send_mcp_message(
|
358 |
-
"LLMResponseAgent",
|
359 |
-
"LLM_GENERATION_REQUEST",
|
360 |
-
{"query": query, "context_chunks": len(context_chunks)},
|
361 |
-
trace_id
|
362 |
-
)
|
363 |
-
|
364 |
-
response = await self.llm_agent.generate_response(query, context_chunks, trace_id)
|
365 |
-
|
366 |
-
return response, context_chunks
|
367 |
-
|
368 |
-
except Exception as e:
|
369 |
-
logger.error(f"Error in query processing: {e}")
|
370 |
-
return f"Error processing query: {str(e)}", []
|
371 |
-
|
372 |
-
# Global coordinator instance
|
373 |
-
coordinator = CoordinatorAgent()
|
374 |
-
|
375 |
-
async def process_files(files):
|
376 |
-
"""Process uploaded files"""
|
377 |
-
if not files:
|
378 |
-
return "β Please upload at least one file."
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
else:
|
387 |
-
|
388 |
-
file_paths.append(file_path)
|
389 |
-
|
390 |
-
result = await coordinator.process_documents(file_paths)
|
391 |
-
|
392 |
-
return result
|
393 |
-
|
394 |
-
async def answer_question(query, history):
|
395 |
-
"""Answer user question"""
|
396 |
-
if not query.strip():
|
397 |
-
return history, ""
|
398 |
-
|
399 |
-
response, context_chunks = await coordinator.answer_query(query)
|
400 |
-
|
401 |
-
# Format response with sources
|
402 |
-
if context_chunks:
|
403 |
-
sources = "\n\n**Sources:**\n"
|
404 |
-
for i, chunk in enumerate(context_chunks[:3], 1): # Show top 3 sources
|
405 |
-
sources += f"{i}. {chunk['source']} (Chunk {chunk['chunk_id']})\n"
|
406 |
-
response += sources
|
407 |
-
|
408 |
-
# Add to chat history
|
409 |
-
history.append((query, response))
|
410 |
-
|
411 |
-
return history, ""
|
412 |
-
|
413 |
-
# Custom CSS
|
414 |
-
custom_css = """
|
415 |
-
/* Main container styling */
|
416 |
-
.gradio-container {
|
417 |
-
max-width: 1200px !important;
|
418 |
-
margin: 0 auto !important;
|
419 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
|
420 |
-
}
|
421 |
-
|
422 |
-
/* Header styling */
|
423 |
-
.header-container {
|
424 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
425 |
-
color: white !important;
|
426 |
-
padding: 2rem !important;
|
427 |
-
border-radius: 15px !important;
|
428 |
-
margin-bottom: 2rem !important;
|
429 |
-
text-align: center !important;
|
430 |
-
box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
|
431 |
-
}
|
432 |
-
|
433 |
-
.header-title {
|
434 |
-
font-size: 2.5rem !important;
|
435 |
-
font-weight: 700 !important;
|
436 |
-
margin-bottom: 0.5rem !important;
|
437 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.3) !important;
|
438 |
-
}
|
439 |
-
|
440 |
-
.header-subtitle {
|
441 |
-
font-size: 1.2rem !important;
|
442 |
-
opacity: 0.9 !important;
|
443 |
-
font-weight: 300 !important;
|
444 |
-
}
|
445 |
-
|
446 |
-
/* Tab styling */
|
447 |
-
.tab-nav {
|
448 |
-
background: white !important;
|
449 |
-
border-radius: 12px !important;
|
450 |
-
box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
|
451 |
-
padding: 0.5rem !important;
|
452 |
-
margin-bottom: 1rem !important;
|
453 |
-
}
|
454 |
-
|
455 |
-
/* Card styling */
|
456 |
-
.setup-card, .upload-card, .chat-card {
|
457 |
-
background: white !important;
|
458 |
-
border-radius: 15px !important;
|
459 |
-
padding: 2rem !important;
|
460 |
-
box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
|
461 |
-
border: 1px solid #e1e5e9 !important;
|
462 |
-
margin-bottom: 1.5rem !important;
|
463 |
-
}
|
464 |
-
|
465 |
-
/* Button styling */
|
466 |
-
.primary-button {
|
467 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
468 |
-
color: white !important;
|
469 |
-
border: none !important;
|
470 |
-
border-radius: 10px !important;
|
471 |
-
padding: 0.75rem 2rem !important;
|
472 |
-
font-weight: 600 !important;
|
473 |
-
transition: all 0.3s ease !important;
|
474 |
-
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
|
475 |
-
}
|
476 |
-
|
477 |
-
.primary-button:hover {
|
478 |
-
transform: translateY(-2px) !important;
|
479 |
-
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
|
480 |
-
}
|
481 |
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
border-radius: 15px !important;
|
488 |
-
padding: 1rem !important;
|
489 |
-
border: 1px solid #e1e5e9 !important;
|
490 |
-
}
|
491 |
|
492 |
-
|
493 |
-
.input-container input, .input-container textarea {
|
494 |
-
border: 2px solid #e1e5e9 !important;
|
495 |
-
border-radius: 10px !important;
|
496 |
-
padding: 0.75rem 1rem !important;
|
497 |
-
font-size: 1rem !important;
|
498 |
-
transition: border-color 0.3s ease !important;
|
499 |
-
}
|
500 |
-
|
501 |
-
.input-container input:focus, .input-container textarea:focus {
|
502 |
-
border-color: #667eea !important;
|
503 |
-
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
504 |
-
outline: none !important;
|
505 |
-
}
|
506 |
-
|
507 |
-
/* Status indicators */
|
508 |
-
.status-success {
|
509 |
-
color: #28a745 !important;
|
510 |
-
background: #d4edda !important;
|
511 |
-
padding: 0.75rem 1rem !important;
|
512 |
-
border-radius: 8px !important;
|
513 |
-
border: 1px solid #c3e6cb !important;
|
514 |
-
margin: 1rem 0 !important;
|
515 |
-
}
|
516 |
-
|
517 |
-
.status-error {
|
518 |
-
color: #dc3545 !important;
|
519 |
-
background: #f8d7da !important;
|
520 |
-
padding: 0.75rem 1rem !important;
|
521 |
-
border-radius: 8px !important;
|
522 |
-
border: 1px solid #f5c6cb !important;
|
523 |
-
margin: 1rem 0 !important;
|
524 |
-
}
|
525 |
-
|
526 |
-
/* File upload styling */
|
527 |
-
.file-upload {
|
528 |
-
border: 2px dashed #667eea !important;
|
529 |
-
border-radius: 15px !important;
|
530 |
-
padding: 2rem !important;
|
531 |
-
text-align: center !important;
|
532 |
-
background: #f8f9ff !important;
|
533 |
-
transition: all 0.3s ease !important;
|
534 |
-
}
|
535 |
-
|
536 |
-
.file-upload:hover {
|
537 |
-
border-color: #764ba2 !important;
|
538 |
-
background: #f0f4ff !important;
|
539 |
-
}
|
540 |
-
|
541 |
-
/* Architecture diagram container */
|
542 |
-
.architecture-container {
|
543 |
-
background: white !important;
|
544 |
-
border-radius: 15px !important;
|
545 |
-
padding: 2rem !important;
|
546 |
-
margin: 1rem 0 !important;
|
547 |
-
box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
|
548 |
-
text-align: center !important;
|
549 |
-
}
|
550 |
-
|
551 |
-
/* Responsive design */
|
552 |
-
@media (max-width: 768px) {
|
553 |
-
.header-title {
|
554 |
-
font-size: 2rem !important;
|
555 |
-
}
|
556 |
-
|
557 |
-
.setup-card, .upload-card, .chat-card {
|
558 |
-
padding: 1.5rem !important;
|
559 |
-
}
|
560 |
-
}
|
561 |
-
|
562 |
-
/* Animation for loading states */
|
563 |
-
@keyframes pulse {
|
564 |
-
0% { opacity: 1; }
|
565 |
-
50% { opacity: 0.5; }
|
566 |
-
100% { opacity: 1; }
|
567 |
-
}
|
568 |
-
|
569 |
-
.loading {
|
570 |
-
animation: pulse 1.5s ease-in-out infinite !important;
|
571 |
-
}
|
572 |
-
"""
|
573 |
-
|
574 |
-
# Create Gradio Interface
|
575 |
def create_interface():
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
gr.HTML("""
|
578 |
-
<div class="header-
|
579 |
-
|
580 |
-
<p class="header-subtitle">Multi-Format Document QA using Model Context Protocol (MCP)</p>
|
581 |
-
</div>
|
582 |
""")
|
583 |
|
584 |
-
with gr.
|
585 |
-
|
586 |
-
|
587 |
-
gr.HTML("""
|
588 |
-
<div class="upload-card">
|
589 |
-
<h3>π Document Upload</h3>
|
590 |
-
<p>Upload your documents in any supported format: PDF, DOCX, PPTX, CSV, TXT, or Markdown.</p>
|
591 |
-
</div>
|
592 |
-
""")
|
593 |
|
594 |
file_upload = gr.File(
|
595 |
-
label="Choose Files",
|
596 |
file_count="multiple",
|
597 |
-
file_types=[".pdf", ".
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
upload_button = gr.Button(
|
602 |
-
"Process Documents",
|
603 |
-
variant="primary",
|
604 |
-
elem_classes=["primary-button"]
|
605 |
)
|
606 |
|
607 |
upload_status = gr.Textbox(
|
608 |
-
label="
|
609 |
interactive=False,
|
610 |
-
|
611 |
)
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
""")
|
|
|
|
|
|
|
621 |
|
622 |
chatbot = gr.Chatbot(
|
623 |
-
|
624 |
-
|
625 |
-
|
|
|
626 |
)
|
627 |
|
628 |
with gr.Row():
|
629 |
-
|
630 |
-
label="
|
631 |
-
placeholder="What are the key findings in the
|
632 |
-
|
633 |
-
|
634 |
-
ask_button = gr.Button(
|
635 |
-
"Ask",
|
636 |
-
variant="primary",
|
637 |
-
elem_classes=["primary-button"]
|
638 |
)
|
|
|
639 |
|
640 |
gr.Examples(
|
641 |
examples=[
|
642 |
-
"What are the main topics
|
643 |
"Can you summarize the key findings?",
|
644 |
-
"What
|
645 |
"What recommendations are provided?",
|
|
|
646 |
],
|
647 |
-
inputs=
|
648 |
-
label="Example Questions"
|
649 |
)
|
650 |
-
|
651 |
-
# Architecture Tab
|
652 |
-
with gr.TabItem("ποΈ Architecture", elem_classes=["tab-nav"]):
|
653 |
-
gr.HTML("""
|
654 |
-
<div class="architecture-container">
|
655 |
-
<h3>ποΈ System Architecture</h3>
|
656 |
-
<p>This system uses an agentic architecture with Model Context Protocol (MCP) for inter-agent communication.</p>
|
657 |
-
</div>
|
658 |
-
""")
|
659 |
-
|
660 |
-
gr.Markdown("""
|
661 |
-
## π Agent Flow Diagram
|
662 |
-
|
663 |
-
```
|
664 |
-
User Upload β CoordinatorAgent β IngestionAgent β RetrievalAgent β LLMResponseAgent
|
665 |
-
β β β β β
|
666 |
-
Documents MCP Messages Text Chunks Vector Store Final Response
|
667 |
-
```
|
668 |
-
|
669 |
-
## π€ Agent Descriptions
|
670 |
-
|
671 |
-
- **CoordinatorAgent**: Orchestrates the entire workflow and manages MCP communication
|
672 |
-
- **IngestionAgent**: Parses and preprocesses documents (PDF, DOCX, PPTX, CSV, TXT, MD)
|
673 |
-
- **RetrievalAgent**: Handles embeddings and semantic retrieval using FAISS
|
674 |
-
- **LLMResponseAgent**: Generates final responses using Llama-3.1-8B-Instruct
|
675 |
-
|
676 |
-
## π Tech Stack
|
677 |
-
|
678 |
-
- **Frontend**: Gradio with custom CSS
|
679 |
-
- **LLM**: Meta Llama-3.1-8B-Instruct (via HuggingFace Inference)
|
680 |
-
- **Embeddings**: sentence-transformers/all-MiniLM-L6-v2
|
681 |
-
- **Vector Store**: FAISS
|
682 |
-
- **Document Processing**: PyPDF2, python-docx, python-pptx, pandas
|
683 |
-
- **Framework**: LangChain for document handling
|
684 |
-
|
685 |
-
## π¨ MCP Message Example
|
686 |
-
|
687 |
-
```json
|
688 |
-
{
|
689 |
-
"sender": "RetrievalAgent",
|
690 |
-
"receiver": "LLMResponseAgent",
|
691 |
-
"type": "RETRIEVAL_RESULT",
|
692 |
-
"trace_id": "rag-457",
|
693 |
-
"payload": {
|
694 |
-
"retrieved_context": ["Revenue increased by 25%", "Q1 KPIs exceeded targets"],
|
695 |
-
"query": "What were the Q1 KPIs?"
|
696 |
-
},
|
697 |
-
"timestamp": "2025-07-21T10:30:00Z"
|
698 |
-
}
|
699 |
-
```
|
700 |
-
""")
|
701 |
|
702 |
# Event handlers
|
703 |
-
|
704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
inputs=[file_upload],
|
706 |
outputs=[upload_status]
|
707 |
)
|
708 |
|
709 |
-
|
710 |
-
|
711 |
-
inputs=[
|
712 |
-
outputs=[chatbot,
|
|
|
713 |
)
|
714 |
|
715 |
-
|
716 |
-
|
717 |
-
inputs=[
|
718 |
-
outputs=[chatbot,
|
|
|
719 |
)
|
720 |
|
721 |
-
return
|
722 |
|
|
|
723 |
if __name__ == "__main__":
|
724 |
demo = create_interface()
|
725 |
demo.launch(
|
726 |
share=True,
|
727 |
server_name="0.0.0.0",
|
728 |
-
server_port=7860
|
729 |
-
show_api=False
|
730 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
3 |
import json
|
4 |
+
import uuid
|
5 |
import asyncio
|
6 |
+
from datetime import datetime
|
7 |
+
from typing import List, Dict, Any, Optional, Generator
|
8 |
import logging
|
9 |
|
10 |
+
# Import required libraries
|
11 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain.vectorstores import FAISS
|
15 |
+
from langchain.docstore.document import Document
|
16 |
+
|
17 |
+
# Import document parsers
|
18 |
+
import PyPDF2
|
19 |
+
from pptx import Presentation
|
20 |
+
import pandas as pd
|
21 |
+
from docx import Document as DocxDocument
|
22 |
+
import io
|
23 |
|
24 |
+
# Configure logging
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
+
# Get HuggingFace token from environment
|
29 |
+
HF_TOKEN = os.getenv("hf_token")
|
30 |
+
if not HF_TOKEN:
|
31 |
+
raise ValueError("HuggingFace token not found in environment variables")
|
32 |
+
|
33 |
+
# Initialize HuggingFace Inference Client
|
34 |
+
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
|
35 |
+
|
36 |
+
# Initialize embeddings
|
37 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
38 |
|
|
|
|
|
39 |
class MCPMessage:
|
40 |
+
"""Model Context Protocol Message Structure"""
|
41 |
+
def __init__(self, sender: str, receiver: str, msg_type: str,
|
42 |
+
trace_id: str = None, payload: Dict = None):
|
43 |
+
self.sender = sender
|
44 |
+
self.receiver = receiver
|
45 |
+
self.type = msg_type
|
46 |
+
self.trace_id = trace_id or str(uuid.uuid4())
|
47 |
+
self.payload = payload or {}
|
48 |
+
self.timestamp = datetime.now().isoformat()
|
|
|
49 |
|
50 |
def to_dict(self):
|
51 |
+
return {
|
52 |
+
"sender": self.sender,
|
53 |
+
"receiver": self.receiver,
|
54 |
+
"type": self.type,
|
55 |
+
"trace_id": self.trace_id,
|
56 |
+
"payload": self.payload,
|
57 |
+
"timestamp": self.timestamp
|
58 |
+
}
|
59 |
+
|
60 |
+
class MessageBus:
|
61 |
+
"""In-memory message bus for MCP communication"""
|
62 |
def __init__(self):
|
63 |
+
self.messages = []
|
64 |
self.subscribers = {}
|
65 |
|
66 |
+
def publish(self, message: MCPMessage):
|
67 |
+
"""Publish message to the bus"""
|
68 |
+
self.messages.append(message)
|
69 |
+
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
|
70 |
+
|
71 |
+
# Notify subscribers
|
72 |
+
if message.receiver in self.subscribers:
|
73 |
+
for callback in self.subscribers[message.receiver]:
|
74 |
+
callback(message)
|
75 |
|
76 |
+
def subscribe(self, agent_name: str, callback):
|
77 |
+
"""Subscribe agent to receive messages"""
|
78 |
+
if agent_name not in self.subscribers:
|
79 |
+
self.subscribers[agent_name] = []
|
80 |
+
self.subscribers[agent_name].append(callback)
|
|
|
|
|
81 |
|
82 |
+
# Global message bus
|
83 |
+
message_bus = MessageBus()
|
84 |
|
85 |
+
class IngestionAgent:
|
86 |
+
"""Agent responsible for document parsing and preprocessing"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
def __init__(self, message_bus: MessageBus):
|
89 |
+
self.name = "IngestionAgent"
|
90 |
+
self.message_bus = message_bus
|
91 |
+
self.message_bus.subscribe(self.name, self.handle_message)
|
|
|
|
|
|
|
92 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
93 |
chunk_size=1000,
|
94 |
+
chunk_overlap=200
|
|
|
95 |
)
|
96 |
|
97 |
+
def handle_message(self, message: MCPMessage):
|
98 |
+
"""Handle incoming MCP messages"""
|
99 |
+
if message.type == "INGESTION_REQUEST":
|
100 |
+
self.process_documents(message)
|
101 |
+
|
102 |
def parse_pdf(self, file_path: str) -> str:
|
103 |
+
"""Parse PDF document"""
|
104 |
try:
|
105 |
with open(file_path, 'rb') as file:
|
106 |
pdf_reader = PyPDF2.PdfReader(file)
|
107 |
text = ""
|
108 |
for page in pdf_reader.pages:
|
109 |
+
text += page.extract_text()
|
110 |
return text
|
111 |
except Exception as e:
|
112 |
logger.error(f"Error parsing PDF: {e}")
|
113 |
return ""
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
def parse_pptx(self, file_path: str) -> str:
|
116 |
+
"""Parse PPTX document"""
|
117 |
try:
|
118 |
prs = Presentation(file_path)
|
119 |
text = ""
|
120 |
+
for slide in prs.slides:
|
|
|
121 |
for shape in slide.shapes:
|
122 |
if hasattr(shape, "text"):
|
123 |
text += shape.text + "\n"
|
|
|
124 |
return text
|
125 |
except Exception as e:
|
126 |
logger.error(f"Error parsing PPTX: {e}")
|
127 |
return ""
|
128 |
|
129 |
def parse_csv(self, file_path: str) -> str:
|
130 |
+
"""Parse CSV document"""
|
131 |
try:
|
132 |
df = pd.read_csv(file_path)
|
133 |
return df.to_string()
|
|
|
135 |
logger.error(f"Error parsing CSV: {e}")
|
136 |
return ""
|
137 |
|
138 |
+
def parse_docx(self, file_path: str) -> str:
|
139 |
+
"""Parse DOCX document"""
|
140 |
+
try:
|
141 |
+
doc = DocxDocument(file_path)
|
142 |
+
text = ""
|
143 |
+
for paragraph in doc.paragraphs:
|
144 |
+
text += paragraph.text + "\n"
|
145 |
+
return text
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error parsing DOCX: {e}")
|
148 |
+
return ""
|
149 |
+
|
150 |
+
def parse_txt(self, file_path: str) -> str:
|
151 |
+
"""Parse TXT/Markdown document"""
|
152 |
try:
|
153 |
with open(file_path, 'r', encoding='utf-8') as file:
|
154 |
+
return file.read()
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
+
logger.error(f"Error parsing TXT: {e}")
|
157 |
return ""
|
158 |
|
159 |
+
def process_documents(self, message: MCPMessage):
|
160 |
+
"""Process uploaded documents"""
|
161 |
+
files = message.payload.get("files", [])
|
162 |
+
processed_docs = []
|
163 |
|
164 |
for file_path in files:
|
165 |
file_ext = os.path.splitext(file_path)[1].lower()
|
|
|
166 |
|
167 |
+
# Parse document based on file type
|
168 |
if file_ext == '.pdf':
|
169 |
+
text = self.parse_pdf(file_path)
|
|
|
|
|
170 |
elif file_ext == '.pptx':
|
171 |
+
text = self.parse_pptx(file_path)
|
172 |
elif file_ext == '.csv':
|
173 |
+
text = self.parse_csv(file_path)
|
174 |
+
elif file_ext == '.docx':
|
175 |
+
text = self.parse_docx(file_path)
|
176 |
elif file_ext in ['.txt', '.md']:
|
177 |
+
text = self.parse_txt(file_path)
|
178 |
else:
|
179 |
logger.warning(f"Unsupported file type: {file_ext}")
|
180 |
continue
|
181 |
|
182 |
+
if text:
|
183 |
+
# Split text into chunks
|
184 |
+
chunks = self.text_splitter.split_text(text)
|
185 |
+
docs = [Document(page_content=chunk, metadata={"source": file_path})
|
186 |
+
for chunk in chunks]
|
187 |
+
processed_docs.extend(docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
# Send processed documents to RetrievalAgent
|
190 |
+
response = MCPMessage(
|
191 |
+
sender=self.name,
|
192 |
+
receiver="RetrievalAgent",
|
193 |
+
msg_type="INGESTION_COMPLETE",
|
194 |
+
trace_id=message.trace_id,
|
195 |
+
payload={"documents": processed_docs}
|
|
|
196 |
)
|
197 |
+
self.message_bus.publish(response)
|
198 |
+
|
199 |
+
class RetrievalAgent:
|
200 |
+
"""Agent responsible for embedding and semantic retrieval"""
|
201 |
+
|
202 |
+
def __init__(self, message_bus: MessageBus):
|
203 |
+
self.name = "RetrievalAgent"
|
204 |
+
self.message_bus = message_bus
|
205 |
+
self.message_bus.subscribe(self.name, self.handle_message)
|
206 |
self.vector_store = None
|
207 |
|
208 |
+
def handle_message(self, message: MCPMessage):
|
209 |
+
"""Handle incoming MCP messages"""
|
210 |
+
if message.type == "INGESTION_COMPLETE":
|
211 |
+
self.create_vector_store(message)
|
212 |
+
elif message.type == "RETRIEVAL_REQUEST":
|
213 |
+
self.retrieve_context(message)
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
def create_vector_store(self, message: MCPMessage):
|
216 |
+
"""Create vector store from processed documents"""
|
217 |
+
documents = message.payload.get("documents", [])
|
|
|
218 |
|
219 |
+
if documents:
|
220 |
+
try:
|
221 |
+
self.vector_store = FAISS.from_documents(documents, embeddings)
|
222 |
+
logger.info(f"Vector store created with {len(documents)} documents")
|
223 |
+
|
224 |
+
# Notify completion
|
225 |
+
response = MCPMessage(
|
226 |
+
sender=self.name,
|
227 |
+
receiver="CoordinatorAgent",
|
228 |
+
msg_type="VECTORSTORE_READY",
|
229 |
+
trace_id=message.trace_id,
|
230 |
+
payload={"status": "ready"}
|
231 |
+
)
|
232 |
+
self.message_bus.publish(response)
|
233 |
+
except Exception as e:
|
234 |
+
logger.error(f"Error creating vector store: {e}")
|
235 |
+
|
236 |
+
def retrieve_context(self, message: MCPMessage):
|
237 |
+
"""Retrieve relevant context for a query"""
|
238 |
+
query = message.payload.get("query", "")
|
239 |
+
k = message.payload.get("k", 3)
|
240 |
+
|
241 |
+
if self.vector_store and query:
|
242 |
+
try:
|
243 |
+
docs = self.vector_store.similarity_search(query, k=k)
|
244 |
+
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
|
245 |
+
for doc in docs]
|
246 |
+
|
247 |
+
response = MCPMessage(
|
248 |
+
sender=self.name,
|
249 |
+
receiver="LLMResponseAgent",
|
250 |
+
msg_type="CONTEXT_RESPONSE",
|
251 |
+
trace_id=message.trace_id,
|
252 |
+
payload={
|
253 |
+
"query": query,
|
254 |
+
"retrieved_context": context,
|
255 |
+
"top_chunks": [doc.page_content for doc in docs]
|
256 |
+
}
|
257 |
+
)
|
258 |
+
self.message_bus.publish(response)
|
259 |
+
except Exception as e:
|
260 |
+
logger.error(f"Error retrieving context: {e}")
|
261 |
|
262 |
+
class LLMResponseAgent:
|
263 |
+
"""Agent responsible for generating LLM responses"""
|
264 |
+
|
265 |
+
def __init__(self, message_bus: MessageBus):
|
266 |
+
self.name = "LLMResponseAgent"
|
267 |
+
self.message_bus = message_bus
|
268 |
+
self.message_bus.subscribe(self.name, self.handle_message)
|
269 |
+
|
270 |
+
def handle_message(self, message: MCPMessage):
|
271 |
+
"""Handle incoming MCP messages"""
|
272 |
+
if message.type == "CONTEXT_RESPONSE":
|
273 |
+
self.generate_response(message)
|
274 |
|
275 |
+
def generate_response(self, message: MCPMessage):
|
276 |
+
"""Generate response using retrieved context"""
|
277 |
+
query = message.payload.get("query", "")
|
278 |
+
context = message.payload.get("retrieved_context", [])
|
|
|
|
|
279 |
|
280 |
+
# Build prompt with context
|
281 |
+
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
|
282 |
+
for ctx in context])
|
283 |
+
|
284 |
+
prompt = f"""Based on the following context, please answer the user's question accurately and comprehensively.
|
285 |
|
286 |
Context:
|
287 |
{context_text}
|
288 |
|
289 |
Question: {query}
|
290 |
|
|
|
|
|
291 |
Answer:"""
|
292 |
+
|
|
|
|
|
|
|
|
|
293 |
try:
|
294 |
+
# Generate streaming response
|
295 |
+
response_stream = client.text_generation(
|
|
|
|
|
296 |
prompt,
|
297 |
max_new_tokens=512,
|
298 |
temperature=0.7,
|
299 |
+
stream=True
|
|
|
300 |
)
|
301 |
|
302 |
+
# Send streaming response
|
303 |
+
response = MCPMessage(
|
304 |
+
sender=self.name,
|
305 |
+
receiver="CoordinatorAgent",
|
306 |
+
msg_type="LLM_RESPONSE_STREAM",
|
307 |
+
trace_id=message.trace_id,
|
308 |
+
payload={
|
309 |
+
"query": query,
|
310 |
+
"response_stream": response_stream,
|
311 |
+
"context": context
|
312 |
+
}
|
313 |
+
)
|
314 |
+
self.message_bus.publish(response)
|
315 |
+
|
316 |
except Exception as e:
|
317 |
logger.error(f"Error generating response: {e}")
|
|
|
318 |
|
319 |
+
class CoordinatorAgent:
|
320 |
+
"""Coordinator agent that orchestrates the entire workflow"""
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
def __init__(self, message_bus: MessageBus):
|
323 |
+
self.name = "CoordinatorAgent"
|
324 |
+
self.message_bus = message_bus
|
325 |
+
self.message_bus.subscribe(self.name, self.handle_message)
|
326 |
+
self.current_response_stream = None
|
327 |
+
self.vector_store_ready = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
def handle_message(self, message: MCPMessage):
|
330 |
+
"""Handle incoming MCP messages"""
|
331 |
+
if message.type == "VECTORSTORE_READY":
|
332 |
+
self.vector_store_ready = True
|
333 |
+
elif message.type == "LLM_RESPONSE_STREAM":
|
334 |
+
self.current_response_stream = message.payload.get("response_stream")
|
335 |
+
|
336 |
+
def process_files(self, files):
|
337 |
+
"""Process uploaded files"""
|
338 |
+
if not files:
|
339 |
+
return "No files uploaded."
|
340 |
|
341 |
+
file_paths = [file.name for file in files]
|
342 |
|
343 |
+
# Send ingestion request
|
344 |
+
message = MCPMessage(
|
345 |
+
sender=self.name,
|
346 |
+
receiver="IngestionAgent",
|
347 |
+
msg_type="INGESTION_REQUEST",
|
348 |
+
payload={"files": file_paths}
|
349 |
+
)
|
350 |
+
self.message_bus.publish(message)
|
351 |
+
|
352 |
+
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
def handle_query(self, query: str, history: List):
|
355 |
+
"""Handle user query and return streaming response"""
|
356 |
+
if not self.vector_store_ready:
|
357 |
+
yield "Please upload and process documents first."
|
358 |
+
return
|
359 |
+
|
360 |
+
# Send retrieval request
|
361 |
+
message = MCPMessage(
|
362 |
+
sender=self.name,
|
363 |
+
receiver="RetrievalAgent",
|
364 |
+
msg_type="RETRIEVAL_REQUEST",
|
365 |
+
payload={"query": query}
|
366 |
+
)
|
367 |
+
self.message_bus.publish(message)
|
368 |
+
|
369 |
+
# Wait for response and stream
|
370 |
+
import time
|
371 |
+
timeout = 10 # seconds
|
372 |
+
start_time = time.time()
|
373 |
+
|
374 |
+
while not self.current_response_stream and (time.time() - start_time) < timeout:
|
375 |
+
time.sleep(0.1)
|
376 |
+
|
377 |
+
if self.current_response_stream:
|
378 |
+
partial_response = ""
|
379 |
+
try:
|
380 |
+
for token in self.current_response_stream:
|
381 |
+
if token:
|
382 |
+
partial_response += token
|
383 |
+
yield partial_response
|
384 |
+
time.sleep(0.05) # Simulate streaming delay
|
385 |
+
except Exception as e:
|
386 |
+
yield f"Error generating response: {e}"
|
387 |
+
finally:
|
388 |
+
self.current_response_stream = None
|
389 |
else:
|
390 |
+
yield "Timeout: No response received from LLM agent."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
# Initialize agents
|
393 |
+
ingestion_agent = IngestionAgent(message_bus)
|
394 |
+
retrieval_agent = RetrievalAgent(message_bus)
|
395 |
+
llm_response_agent = LLMResponseAgent(message_bus)
|
396 |
+
coordinator_agent = CoordinatorAgent(message_bus)
|
|
|
|
|
|
|
|
|
397 |
|
398 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
def create_interface():
|
400 |
+
"""Create Gradio interface"""
|
401 |
+
|
402 |
+
with gr.Blocks(
|
403 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
|
404 |
+
css="""
|
405 |
+
.gradio-container {
|
406 |
+
max-width: 1200px !important;
|
407 |
+
}
|
408 |
+
.header-text {
|
409 |
+
text-align: center;
|
410 |
+
color: #667eea;
|
411 |
+
font-size: 2.5em;
|
412 |
+
font-weight: bold;
|
413 |
+
margin-bottom: 10px;
|
414 |
+
}
|
415 |
+
.subheader-text {
|
416 |
+
text-align: center;
|
417 |
+
color: #666;
|
418 |
+
font-size: 1.2em;
|
419 |
+
margin-bottom: 20px;
|
420 |
+
}
|
421 |
+
.upload-section {
|
422 |
+
border: 2px dashed #667eea;
|
423 |
+
border-radius: 10px;
|
424 |
+
padding: 20px;
|
425 |
+
margin: 10px 0;
|
426 |
+
}
|
427 |
+
.chat-container {
|
428 |
+
height: 500px;
|
429 |
+
}
|
430 |
+
""",
|
431 |
+
title="π€ Agentic RAG Chatbot"
|
432 |
+
) as iface:
|
433 |
+
|
434 |
+
# Header
|
435 |
gr.HTML("""
|
436 |
+
<div class="header-text">π€ Agentic RAG Chatbot</div>
|
437 |
+
<div class="subheader-text">Multi-Format Document QA with Model Context Protocol (MCP)</div>
|
|
|
|
|
438 |
""")
|
439 |
|
440 |
+
with gr.Row():
|
441 |
+
with gr.Column(scale=1):
|
442 |
+
gr.Markdown("## π Document Upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
file_upload = gr.File(
|
|
|
445 |
file_count="multiple",
|
446 |
+
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
|
447 |
+
label="Upload Documents (PDF, PPTX, CSV, DOCX, TXT, MD)",
|
448 |
+
elem_classes=["upload-section"]
|
|
|
|
|
|
|
|
|
|
|
449 |
)
|
450 |
|
451 |
upload_status = gr.Textbox(
|
452 |
+
label="Upload Status",
|
453 |
interactive=False,
|
454 |
+
max_lines=3
|
455 |
)
|
456 |
+
|
457 |
+
process_btn = gr.Button(
|
458 |
+
"π Process Documents",
|
459 |
+
variant="primary",
|
460 |
+
size="lg"
|
461 |
+
)
|
462 |
+
|
463 |
+
gr.Markdown("## ποΈ Architecture Info")
|
464 |
+
gr.Markdown("""
|
465 |
+
**Agents:**
|
466 |
+
- π IngestionAgent: Document parsing
|
467 |
+
- π RetrievalAgent: Semantic search
|
468 |
+
- π€ LLMResponseAgent: Response generation
|
469 |
+
- π― CoordinatorAgent: Workflow orchestration
|
470 |
+
|
471 |
+
**MCP Communication:** Structured message passing between agents
|
472 |
""")
|
473 |
+
|
474 |
+
with gr.Column(scale=2):
|
475 |
+
gr.Markdown("## π¬ Chat Interface")
|
476 |
|
477 |
chatbot = gr.Chatbot(
|
478 |
+
height=500,
|
479 |
+
elem_classes=["chat-container"],
|
480 |
+
show_copy_button=True,
|
481 |
+
bubble_full_width=False
|
482 |
)
|
483 |
|
484 |
with gr.Row():
|
485 |
+
msg = gr.Textbox(
|
486 |
+
label="Ask a question about your documents...",
|
487 |
+
placeholder="What are the key findings in the uploaded documents?",
|
488 |
+
scale=4,
|
489 |
+
submit=True
|
|
|
|
|
|
|
|
|
490 |
)
|
491 |
+
submit_btn = gr.Button("Send π", scale=1, variant="primary")
|
492 |
|
493 |
gr.Examples(
|
494 |
examples=[
|
495 |
+
"What are the main topics discussed in the documents?",
|
496 |
"Can you summarize the key findings?",
|
497 |
+
"What metrics or KPIs are mentioned?",
|
498 |
"What recommendations are provided?",
|
499 |
+
"Are there any trends or patterns identified?"
|
500 |
],
|
501 |
+
inputs=msg
|
|
|
502 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
504 |
# Event handlers
|
505 |
+
def process_files_handler(files):
|
506 |
+
return coordinator_agent.process_files(files)
|
507 |
+
|
508 |
+
def respond(message, history):
|
509 |
+
if message.strip():
|
510 |
+
# Add user message to history
|
511 |
+
history.append([message, ""])
|
512 |
+
|
513 |
+
# Get streaming response
|
514 |
+
for response in coordinator_agent.handle_query(message, history):
|
515 |
+
history[-1][1] = response
|
516 |
+
yield history, ""
|
517 |
+
else:
|
518 |
+
yield history, message
|
519 |
+
|
520 |
+
process_btn.click(
|
521 |
+
process_files_handler,
|
522 |
inputs=[file_upload],
|
523 |
outputs=[upload_status]
|
524 |
)
|
525 |
|
526 |
+
submit_btn.click(
|
527 |
+
respond,
|
528 |
+
inputs=[msg, chatbot],
|
529 |
+
outputs=[chatbot, msg],
|
530 |
+
show_progress=True
|
531 |
)
|
532 |
|
533 |
+
msg.submit(
|
534 |
+
respond,
|
535 |
+
inputs=[msg, chatbot],
|
536 |
+
outputs=[chatbot, msg],
|
537 |
+
show_progress=True
|
538 |
)
|
539 |
|
540 |
+
return iface
|
541 |
|
542 |
+
# Launch the application
|
543 |
if __name__ == "__main__":
|
544 |
demo = create_interface()
|
545 |
demo.launch(
|
546 |
share=True,
|
547 |
server_name="0.0.0.0",
|
548 |
+
server_port=7860
|
|
|
549 |
)
|