Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain_community.vectorstores import FAISS
|
15 |
from langchain.docstore.document import Document
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Import document parsers
|
18 |
import PyPDF2
|
@@ -30,8 +34,12 @@ HF_TOKEN = os.getenv("hf_token")
|
|
30 |
if not HF_TOKEN:
|
31 |
raise ValueError("HuggingFace token not found in environment variables")
|
32 |
|
33 |
-
# Initialize HuggingFace
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Initialize embeddings
|
37 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
@@ -197,29 +205,60 @@ class IngestionAgent:
|
|
197 |
self.message_bus.publish(response)
|
198 |
|
199 |
class RetrievalAgent:
|
200 |
-
"""Agent responsible for embedding and semantic retrieval"""
|
201 |
|
202 |
def __init__(self, message_bus: MessageBus):
|
203 |
self.name = "RetrievalAgent"
|
204 |
self.message_bus = message_bus
|
205 |
self.message_bus.subscribe(self.name, self.handle_message)
|
206 |
self.vector_store = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
def handle_message(self, message: MCPMessage):
|
209 |
"""Handle incoming MCP messages"""
|
210 |
if message.type == "INGESTION_COMPLETE":
|
211 |
self.create_vector_store(message)
|
212 |
elif message.type == "RETRIEVAL_REQUEST":
|
213 |
-
self.
|
214 |
|
215 |
def create_vector_store(self, message: MCPMessage):
|
216 |
-
"""Create vector store from processed documents"""
|
217 |
documents = message.payload.get("documents", [])
|
218 |
|
219 |
if documents:
|
220 |
try:
|
221 |
self.vector_store = FAISS.from_documents(documents, embeddings)
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# Notify completion
|
225 |
response = MCPMessage(
|
@@ -233,102 +272,60 @@ class RetrievalAgent:
|
|
233 |
except Exception as e:
|
234 |
logger.error(f"Error creating vector store: {e}")
|
235 |
|
236 |
-
def
|
237 |
-
"""
|
238 |
query = message.payload.get("query", "")
|
239 |
-
|
240 |
|
241 |
-
if self.
|
242 |
-
|
243 |
-
docs = self.vector_store.similarity_search(query, k=k)
|
244 |
-
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
|
245 |
-
for doc in docs]
|
246 |
-
|
247 |
-
response = MCPMessage(
|
248 |
-
sender=self.name,
|
249 |
-
receiver="LLMResponseAgent",
|
250 |
-
msg_type="CONTEXT_RESPONSE",
|
251 |
-
trace_id=message.trace_id,
|
252 |
-
payload={
|
253 |
-
"query": query,
|
254 |
-
"retrieved_context": context,
|
255 |
-
"top_chunks": [doc.page_content for doc in docs]
|
256 |
-
}
|
257 |
-
)
|
258 |
-
self.message_bus.publish(response)
|
259 |
-
except Exception as e:
|
260 |
-
logger.error(f"Error retrieving context: {e}")
|
261 |
-
|
262 |
-
class LLMResponseAgent:
|
263 |
-
"""Agent responsible for generating LLM responses"""
|
264 |
-
|
265 |
-
def __init__(self, message_bus: MessageBus):
|
266 |
-
self.name = "LLMResponseAgent"
|
267 |
-
self.message_bus = message_bus
|
268 |
-
self.message_bus.subscribe(self.name, self.handle_message)
|
269 |
-
|
270 |
-
def handle_message(self, message: MCPMessage):
|
271 |
-
"""Handle incoming MCP messages"""
|
272 |
-
if message.type == "CONTEXT_RESPONSE":
|
273 |
-
self.generate_response(message)
|
274 |
-
|
275 |
-
def generate_response(self, message: MCPMessage):
|
276 |
-
"""Generate response using retrieved context"""
|
277 |
-
query = message.payload.get("query", "")
|
278 |
-
context = message.payload.get("retrieved_context", [])
|
279 |
-
|
280 |
-
# Build context string
|
281 |
-
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
|
282 |
-
for ctx in context])
|
283 |
|
284 |
-
# Create messages for conversational format
|
285 |
-
messages = [
|
286 |
-
{
|
287 |
-
"role": "system",
|
288 |
-
"content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.",
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"role": "user",
|
292 |
-
"content": f"Context:\n\n{context_text}\n\nQuestion: {query}"
|
293 |
-
}
|
294 |
-
]
|
295 |
-
|
296 |
try:
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
# Send streaming response
|
306 |
response = MCPMessage(
|
307 |
sender=self.name,
|
308 |
receiver="CoordinatorAgent",
|
309 |
-
msg_type="
|
310 |
trace_id=message.trace_id,
|
311 |
payload={
|
312 |
"query": query,
|
313 |
-
"
|
314 |
-
"
|
315 |
}
|
316 |
)
|
317 |
self.message_bus.publish(response)
|
318 |
|
319 |
except Exception as e:
|
320 |
-
logger.error(f"Error
|
321 |
-
# Send
|
322 |
-
error_msg = f"Error from LLM: {e}"
|
323 |
-
def error_generator():
|
324 |
-
yield error_msg
|
325 |
-
|
326 |
response = MCPMessage(
|
327 |
sender=self.name,
|
328 |
receiver="CoordinatorAgent",
|
329 |
-
msg_type="
|
330 |
trace_id=message.trace_id,
|
331 |
-
payload={
|
|
|
|
|
|
|
|
|
332 |
)
|
333 |
self.message_bus.publish(response)
|
334 |
|
@@ -339,15 +336,15 @@ class CoordinatorAgent:
|
|
339 |
self.name = "CoordinatorAgent"
|
340 |
self.message_bus = message_bus
|
341 |
self.message_bus.subscribe(self.name, self.handle_message)
|
342 |
-
self.current_response_stream = None
|
343 |
self.vector_store_ready = False
|
|
|
344 |
|
345 |
def handle_message(self, message: MCPMessage):
|
346 |
"""Handle incoming MCP messages"""
|
347 |
if message.type == "VECTORSTORE_READY":
|
348 |
self.vector_store_ready = True
|
349 |
-
elif message.type == "
|
350 |
-
self.
|
351 |
|
352 |
def process_files(self, files):
|
353 |
"""Process uploaded files"""
|
@@ -367,59 +364,56 @@ class CoordinatorAgent:
|
|
367 |
|
368 |
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
|
369 |
|
370 |
-
def handle_query(self, query: str
|
371 |
-
"""Handle user query
|
372 |
if not self.vector_store_ready:
|
373 |
-
|
374 |
-
return
|
375 |
|
376 |
# Send retrieval request
|
377 |
message = MCPMessage(
|
378 |
sender=self.name,
|
379 |
receiver="RetrievalAgent",
|
380 |
msg_type="RETRIEVAL_REQUEST",
|
381 |
-
payload={"query": query}
|
382 |
)
|
383 |
self.message_bus.publish(message)
|
384 |
|
385 |
-
# Wait for response
|
386 |
import time
|
387 |
-
timeout =
|
388 |
start_time = time.time()
|
389 |
|
390 |
-
while not self.
|
391 |
time.sleep(0.1)
|
392 |
|
393 |
-
if self.
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
|
|
|
|
|
|
405 |
else:
|
406 |
-
|
407 |
|
408 |
# Initialize agents
|
409 |
ingestion_agent = IngestionAgent(message_bus)
|
410 |
retrieval_agent = RetrievalAgent(message_bus)
|
411 |
-
llm_response_agent = LLMResponseAgent(message_bus)
|
412 |
coordinator_agent = CoordinatorAgent(message_bus)
|
413 |
|
414 |
def create_interface():
|
415 |
"""Create ChatGPT-style Gradio interface"""
|
416 |
|
417 |
with gr.Blocks(
|
418 |
-
theme=gr.themes.Base(
|
419 |
-
primary_hue="yellow",
|
420 |
-
secondary_hue="gray",
|
421 |
-
neutral_hue="slate"
|
422 |
-
),
|
423 |
css="""
|
424 |
/* Dark theme styling */
|
425 |
.gradio-container {
|
@@ -478,24 +472,6 @@ def create_interface():
|
|
478 |
margin-bottom: 1rem;
|
479 |
}
|
480 |
|
481 |
-
.gradio-chatbot .message {
|
482 |
-
background: rgba(45, 45, 45, 0.8) !important;
|
483 |
-
border: 1px solid rgba(255, 193, 7, 0.1) !important;
|
484 |
-
border-radius: 12px !important;
|
485 |
-
margin: 0.5rem 0 !important;
|
486 |
-
}
|
487 |
-
|
488 |
-
.gradio-chatbot .message.user {
|
489 |
-
background: rgba(255, 193, 7, 0.1) !important;
|
490 |
-
border-color: rgba(255, 193, 7, 0.3) !important;
|
491 |
-
margin-left: 20% !important;
|
492 |
-
}
|
493 |
-
|
494 |
-
.gradio-chatbot .message.bot {
|
495 |
-
background: rgba(45, 45, 45, 0.9) !important;
|
496 |
-
margin-right: 20% !important;
|
497 |
-
}
|
498 |
-
|
499 |
/* Input area */
|
500 |
.input-area {
|
501 |
background: rgba(45, 45, 45, 0.6);
|
@@ -515,11 +491,6 @@ def create_interface():
|
|
515 |
transition: all 0.3s ease;
|
516 |
}
|
517 |
|
518 |
-
.upload-area:hover {
|
519 |
-
background: rgba(255, 193, 7, 0.1);
|
520 |
-
border-color: rgba(255, 193, 7, 0.5);
|
521 |
-
}
|
522 |
-
|
523 |
/* Buttons */
|
524 |
.primary-btn {
|
525 |
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
|
@@ -527,13 +498,6 @@ def create_interface():
|
|
527 |
border: none !important;
|
528 |
border-radius: 8px !important;
|
529 |
font-weight: 600 !important;
|
530 |
-
transition: all 0.3s ease !important;
|
531 |
-
}
|
532 |
-
|
533 |
-
.primary-btn:hover {
|
534 |
-
background: linear-gradient(135deg, #ffcd38 0%, #ffa726 100%) !important;
|
535 |
-
transform: translateY(-1px);
|
536 |
-
box-shadow: 0 4px 12px rgba(255, 193, 7, 0.3);
|
537 |
}
|
538 |
|
539 |
/* Text inputs */
|
@@ -544,17 +508,6 @@ def create_interface():
|
|
544 |
border-radius: 8px !important;
|
545 |
}
|
546 |
|
547 |
-
.gradio-textbox input:focus, .gradio-textbox textarea:focus {
|
548 |
-
border-color: #ffc107 !important;
|
549 |
-
box-shadow: 0 0 0 2px rgba(255, 193, 7, 0.2) !important;
|
550 |
-
}
|
551 |
-
|
552 |
-
/* File component */
|
553 |
-
.gradio-file {
|
554 |
-
background: transparent !important;
|
555 |
-
border: none !important;
|
556 |
-
}
|
557 |
-
|
558 |
/* Processing indicator */
|
559 |
.processing-indicator {
|
560 |
background: rgba(255, 193, 7, 0.1);
|
@@ -564,76 +517,40 @@ def create_interface():
|
|
564 |
margin: 0.5rem 0;
|
565 |
color: #ffc107;
|
566 |
text-align: center;
|
567 |
-
animation: pulse 2s infinite;
|
568 |
-
}
|
569 |
-
|
570 |
-
@keyframes pulse {
|
571 |
-
0%, 100% { opacity: 1; }
|
572 |
-
50% { opacity: 0.7; }
|
573 |
-
}
|
574 |
-
|
575 |
-
/* Hide labels for cleaner look */
|
576 |
-
.gradio-textbox label,
|
577 |
-
.gradio-file label {
|
578 |
-
display: none !important;
|
579 |
-
}
|
580 |
-
|
581 |
-
/* Scrollbar styling */
|
582 |
-
::-webkit-scrollbar {
|
583 |
-
width: 8px;
|
584 |
-
}
|
585 |
-
|
586 |
-
::-webkit-scrollbar-track {
|
587 |
-
background: rgba(45, 45, 45, 0.3);
|
588 |
-
border-radius: 4px;
|
589 |
-
}
|
590 |
-
|
591 |
-
::-webkit-scrollbar-thumb {
|
592 |
-
background: rgba(255, 193, 7, 0.5);
|
593 |
-
border-radius: 4px;
|
594 |
-
}
|
595 |
-
|
596 |
-
::-webkit-scrollbar-thumb:hover {
|
597 |
-
background: rgba(255, 193, 7, 0.7);
|
598 |
}
|
599 |
""",
|
600 |
title="Agentic RAG Assistant"
|
601 |
) as iface:
|
602 |
|
603 |
# Header
|
604 |
-
with gr.Row(
|
605 |
with gr.Column():
|
606 |
gr.HTML("""
|
607 |
-
<div
|
608 |
-
<
|
609 |
-
|
610 |
-
<p>Upload documents and ask questions - powered by Multi-Agent Architecture</p>
|
611 |
-
</div>
|
612 |
</div>
|
613 |
""")
|
614 |
|
615 |
# Main chat container
|
616 |
-
with gr.Row(
|
617 |
with gr.Column():
|
618 |
|
619 |
# Chatbot
|
620 |
chatbot = gr.Chatbot(
|
621 |
value=[],
|
622 |
height=500,
|
623 |
-
show_copy_button=True
|
624 |
-
bubble_full_width=False,
|
625 |
-
elem_classes=["gradio-chatbot"]
|
626 |
)
|
627 |
|
628 |
# Input area
|
629 |
-
with gr.Column(
|
630 |
|
631 |
-
# File upload
|
632 |
file_upload = gr.File(
|
633 |
file_count="multiple",
|
634 |
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
|
635 |
-
|
636 |
-
visible=True
|
637 |
)
|
638 |
|
639 |
# Processing status
|
@@ -643,27 +560,10 @@ def create_interface():
|
|
643 |
with gr.Row():
|
644 |
msg_input = gr.Textbox(
|
645 |
placeholder="Upload documents above, then ask your questions here...",
|
646 |
-
|
647 |
-
|
648 |
-
autofocus=True
|
649 |
-
)
|
650 |
-
send_btn = gr.Button(
|
651 |
-
"Send",
|
652 |
-
scale=1,
|
653 |
-
elem_classes=["primary-btn"]
|
654 |
)
|
655 |
-
|
656 |
-
# Quick examples
|
657 |
-
gr.Examples(
|
658 |
-
examples=[
|
659 |
-
"What are the main topics in the documents?",
|
660 |
-
"Summarize the key findings",
|
661 |
-
"What metrics are mentioned?",
|
662 |
-
"What are the recommendations?"
|
663 |
-
],
|
664 |
-
inputs=msg_input,
|
665 |
-
elem_classes=["examples"]
|
666 |
-
)
|
667 |
|
668 |
# State to track document processing
|
669 |
doc_processed = gr.State(False)
|
@@ -686,9 +586,9 @@ def create_interface():
|
|
686 |
|
687 |
# Wait a moment for processing to complete
|
688 |
import time
|
689 |
-
time.sleep(
|
690 |
|
691 |
-
success_html =
|
692 |
<div style="background: rgba(76, 175, 80, 0.1); border: 1px solid rgba(76, 175, 80, 0.3);
|
693 |
border-radius: 8px; padding: 0.75rem; color: #4caf50; text-align: center;">
|
694 |
✅ Documents processed successfully! You can now ask questions.
|
@@ -712,15 +612,11 @@ def create_interface():
|
|
712 |
if not message.strip():
|
713 |
return history, message
|
714 |
|
715 |
-
#
|
716 |
-
|
717 |
|
718 |
-
#
|
719 |
-
response
|
720 |
-
for token in coordinator_agent.handle_query(message, history):
|
721 |
-
response += token
|
722 |
-
history[-1][1] = response
|
723 |
-
yield history, ""
|
724 |
|
725 |
return history, ""
|
726 |
|
@@ -735,15 +631,13 @@ def create_interface():
|
|
735 |
send_btn.click(
|
736 |
respond,
|
737 |
inputs=[msg_input, chatbot, doc_processed],
|
738 |
-
outputs=[chatbot, msg_input]
|
739 |
-
show_progress=True
|
740 |
)
|
741 |
|
742 |
msg_input.submit(
|
743 |
respond,
|
744 |
inputs=[msg_input, chatbot, doc_processed],
|
745 |
-
outputs=[chatbot, msg_input]
|
746 |
-
show_progress=True
|
747 |
)
|
748 |
|
749 |
return iface
|
|
|
13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain_community.vectorstores import FAISS
|
15 |
from langchain.docstore.document import Document
|
16 |
+
from langchain.chains import LLMChain, RetrievalQA, ConversationalRetrievalChain
|
17 |
+
from langchain.memory import ConversationBufferMemory
|
18 |
+
from langchain.prompts import PromptTemplate
|
19 |
+
from langchain_community.llms import HuggingFaceHub
|
20 |
|
21 |
# Import document parsers
|
22 |
import PyPDF2
|
|
|
34 |
if not HF_TOKEN:
|
35 |
raise ValueError("HuggingFace token not found in environment variables")
|
36 |
|
37 |
+
# Initialize HuggingFace LLM
|
38 |
+
llm = HuggingFaceHub(
|
39 |
+
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
40 |
+
huggingfacehub_api_token=HF_TOKEN,
|
41 |
+
model_kwargs={"temperature": 0.7, "max_length": 512}
|
42 |
+
)
|
43 |
|
44 |
# Initialize embeddings
|
45 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
205 |
self.message_bus.publish(response)
|
206 |
|
207 |
class RetrievalAgent:
|
208 |
+
"""Agent responsible for embedding and semantic retrieval using LangChain"""
|
209 |
|
210 |
def __init__(self, message_bus: MessageBus):
|
211 |
self.name = "RetrievalAgent"
|
212 |
self.message_bus = message_bus
|
213 |
self.message_bus.subscribe(self.name, self.handle_message)
|
214 |
self.vector_store = None
|
215 |
+
self.retriever = None
|
216 |
+
self.qa_chain = None
|
217 |
+
self.conversation_chain = None
|
218 |
+
self.memory = ConversationBufferMemory(
|
219 |
+
memory_key="chat_history",
|
220 |
+
return_messages=True,
|
221 |
+
output_key="answer"
|
222 |
+
)
|
223 |
|
224 |
def handle_message(self, message: MCPMessage):
|
225 |
"""Handle incoming MCP messages"""
|
226 |
if message.type == "INGESTION_COMPLETE":
|
227 |
self.create_vector_store(message)
|
228 |
elif message.type == "RETRIEVAL_REQUEST":
|
229 |
+
self.process_query(message)
|
230 |
|
231 |
def create_vector_store(self, message: MCPMessage):
|
232 |
+
"""Create vector store and chains from processed documents"""
|
233 |
documents = message.payload.get("documents", [])
|
234 |
|
235 |
if documents:
|
236 |
try:
|
237 |
self.vector_store = FAISS.from_documents(documents, embeddings)
|
238 |
+
self.retriever = self.vector_store.as_retriever(
|
239 |
+
search_type="similarity",
|
240 |
+
search_kwargs={"k": 3}
|
241 |
+
)
|
242 |
+
|
243 |
+
# Create QA chain
|
244 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
245 |
+
llm=llm,
|
246 |
+
chain_type="stuff",
|
247 |
+
retriever=self.retriever,
|
248 |
+
return_source_documents=True,
|
249 |
+
verbose=True
|
250 |
+
)
|
251 |
+
|
252 |
+
# Create conversational chain
|
253 |
+
self.conversation_chain = ConversationalRetrievalChain.from_llm(
|
254 |
+
llm=llm,
|
255 |
+
retriever=self.retriever,
|
256 |
+
memory=self.memory,
|
257 |
+
return_source_documents=True,
|
258 |
+
verbose=True
|
259 |
+
)
|
260 |
+
|
261 |
+
logger.info(f"Vector store and chains created with {len(documents)} documents")
|
262 |
|
263 |
# Notify completion
|
264 |
response = MCPMessage(
|
|
|
272 |
except Exception as e:
|
273 |
logger.error(f"Error creating vector store: {e}")
|
274 |
|
275 |
+
def process_query(self, message: MCPMessage):
|
276 |
+
"""Process query using conversational retrieval chain"""
|
277 |
query = message.payload.get("query", "")
|
278 |
+
use_conversation = message.payload.get("use_conversation", True)
|
279 |
|
280 |
+
if not self.qa_chain or not query:
|
281 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
try:
|
284 |
+
if use_conversation and self.conversation_chain:
|
285 |
+
# Use conversational chain for context-aware responses
|
286 |
+
result = self.conversation_chain({"question": query})
|
287 |
+
answer = result["answer"]
|
288 |
+
source_docs = result.get("source_documents", [])
|
289 |
+
else:
|
290 |
+
# Use simple QA chain
|
291 |
+
result = self.qa_chain({"query": query})
|
292 |
+
answer = result["result"]
|
293 |
+
source_docs = result.get("source_documents", [])
|
294 |
+
|
295 |
+
# Format sources
|
296 |
+
sources = []
|
297 |
+
for doc in source_docs:
|
298 |
+
sources.append({
|
299 |
+
"content": doc.page_content[:200] + "...",
|
300 |
+
"source": doc.metadata.get("source", "Unknown")
|
301 |
+
})
|
302 |
|
|
|
303 |
response = MCPMessage(
|
304 |
sender=self.name,
|
305 |
receiver="CoordinatorAgent",
|
306 |
+
msg_type="CHAIN_RESPONSE",
|
307 |
trace_id=message.trace_id,
|
308 |
payload={
|
309 |
"query": query,
|
310 |
+
"answer": answer,
|
311 |
+
"sources": sources
|
312 |
}
|
313 |
)
|
314 |
self.message_bus.publish(response)
|
315 |
|
316 |
except Exception as e:
|
317 |
+
logger.error(f"Error processing query: {e}")
|
318 |
+
# Send error response
|
|
|
|
|
|
|
|
|
319 |
response = MCPMessage(
|
320 |
sender=self.name,
|
321 |
receiver="CoordinatorAgent",
|
322 |
+
msg_type="CHAIN_RESPONSE",
|
323 |
trace_id=message.trace_id,
|
324 |
+
payload={
|
325 |
+
"query": query,
|
326 |
+
"answer": f"Error processing query: {str(e)}",
|
327 |
+
"sources": []
|
328 |
+
}
|
329 |
)
|
330 |
self.message_bus.publish(response)
|
331 |
|
|
|
336 |
self.name = "CoordinatorAgent"
|
337 |
self.message_bus = message_bus
|
338 |
self.message_bus.subscribe(self.name, self.handle_message)
|
|
|
339 |
self.vector_store_ready = False
|
340 |
+
self.current_response = None
|
341 |
|
342 |
def handle_message(self, message: MCPMessage):
|
343 |
"""Handle incoming MCP messages"""
|
344 |
if message.type == "VECTORSTORE_READY":
|
345 |
self.vector_store_ready = True
|
346 |
+
elif message.type == "CHAIN_RESPONSE":
|
347 |
+
self.current_response = message.payload
|
348 |
|
349 |
def process_files(self, files):
|
350 |
"""Process uploaded files"""
|
|
|
364 |
|
365 |
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
|
366 |
|
367 |
+
def handle_query(self, query: str):
|
368 |
+
"""Handle user query using LangChain chains"""
|
369 |
if not self.vector_store_ready:
|
370 |
+
return "Please upload and process documents first."
|
|
|
371 |
|
372 |
# Send retrieval request
|
373 |
message = MCPMessage(
|
374 |
sender=self.name,
|
375 |
receiver="RetrievalAgent",
|
376 |
msg_type="RETRIEVAL_REQUEST",
|
377 |
+
payload={"query": query, "use_conversation": True}
|
378 |
)
|
379 |
self.message_bus.publish(message)
|
380 |
|
381 |
+
# Wait for response
|
382 |
import time
|
383 |
+
timeout = 30 # seconds
|
384 |
start_time = time.time()
|
385 |
|
386 |
+
while not self.current_response and (time.time() - start_time) < timeout:
|
387 |
time.sleep(0.1)
|
388 |
|
389 |
+
if self.current_response:
|
390 |
+
response = self.current_response
|
391 |
+
self.current_response = None # Reset for next query
|
392 |
+
|
393 |
+
# Format response with sources
|
394 |
+
answer = response.get("answer", "No answer generated.")
|
395 |
+
sources = response.get("sources", [])
|
396 |
+
|
397 |
+
if sources:
|
398 |
+
source_text = "\n\n**Sources:**\n"
|
399 |
+
for i, source in enumerate(sources, 1):
|
400 |
+
source_text += f"{i}. {source['source']}: {source['content']}\n"
|
401 |
+
answer += source_text
|
402 |
+
|
403 |
+
return answer
|
404 |
else:
|
405 |
+
return "Timeout: No response received from the system."
|
406 |
|
407 |
# Initialize agents
|
408 |
ingestion_agent = IngestionAgent(message_bus)
|
409 |
retrieval_agent = RetrievalAgent(message_bus)
|
|
|
410 |
coordinator_agent = CoordinatorAgent(message_bus)
|
411 |
|
412 |
def create_interface():
|
413 |
"""Create ChatGPT-style Gradio interface"""
|
414 |
|
415 |
with gr.Blocks(
|
416 |
+
theme=gr.themes.Base(),
|
|
|
|
|
|
|
|
|
417 |
css="""
|
418 |
/* Dark theme styling */
|
419 |
.gradio-container {
|
|
|
472 |
margin-bottom: 1rem;
|
473 |
}
|
474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
/* Input area */
|
476 |
.input-area {
|
477 |
background: rgba(45, 45, 45, 0.6);
|
|
|
491 |
transition: all 0.3s ease;
|
492 |
}
|
493 |
|
|
|
|
|
|
|
|
|
|
|
494 |
/* Buttons */
|
495 |
.primary-btn {
|
496 |
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
|
|
|
498 |
border: none !important;
|
499 |
border-radius: 8px !important;
|
500 |
font-weight: 600 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
}
|
502 |
|
503 |
/* Text inputs */
|
|
|
508 |
border-radius: 8px !important;
|
509 |
}
|
510 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
/* Processing indicator */
|
512 |
.processing-indicator {
|
513 |
background: rgba(255, 193, 7, 0.1);
|
|
|
517 |
margin: 0.5rem 0;
|
518 |
color: #ffc107;
|
519 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
}
|
521 |
""",
|
522 |
title="Agentic RAG Assistant"
|
523 |
) as iface:
|
524 |
|
525 |
# Header
|
526 |
+
with gr.Row():
|
527 |
with gr.Column():
|
528 |
gr.HTML("""
|
529 |
+
<div class="header">
|
530 |
+
<h1>🤖 Agentic RAG Assistant</h1>
|
531 |
+
<p>Upload documents and ask questions - powered by LangChain Multi-Agent Architecture</p>
|
|
|
|
|
532 |
</div>
|
533 |
""")
|
534 |
|
535 |
# Main chat container
|
536 |
+
with gr.Row():
|
537 |
with gr.Column():
|
538 |
|
539 |
# Chatbot
|
540 |
chatbot = gr.Chatbot(
|
541 |
value=[],
|
542 |
height=500,
|
543 |
+
show_copy_button=True
|
|
|
|
|
544 |
)
|
545 |
|
546 |
# Input area
|
547 |
+
with gr.Column():
|
548 |
|
549 |
+
# File upload
|
550 |
file_upload = gr.File(
|
551 |
file_count="multiple",
|
552 |
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
|
553 |
+
label="Upload Documents"
|
|
|
554 |
)
|
555 |
|
556 |
# Processing status
|
|
|
560 |
with gr.Row():
|
561 |
msg_input = gr.Textbox(
|
562 |
placeholder="Upload documents above, then ask your questions here...",
|
563 |
+
label="Message",
|
564 |
+
scale=4
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
)
|
566 |
+
send_btn = gr.Button("Send", scale=1, variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
|
568 |
# State to track document processing
|
569 |
doc_processed = gr.State(False)
|
|
|
586 |
|
587 |
# Wait a moment for processing to complete
|
588 |
import time
|
589 |
+
time.sleep(3)
|
590 |
|
591 |
+
success_html = """
|
592 |
<div style="background: rgba(76, 175, 80, 0.1); border: 1px solid rgba(76, 175, 80, 0.3);
|
593 |
border-radius: 8px; padding: 0.75rem; color: #4caf50; text-align: center;">
|
594 |
✅ Documents processed successfully! You can now ask questions.
|
|
|
612 |
if not message.strip():
|
613 |
return history, message
|
614 |
|
615 |
+
# Get response from coordinator
|
616 |
+
response = coordinator_agent.handle_query(message)
|
617 |
|
618 |
+
# Add to chat history
|
619 |
+
history.append([message, response])
|
|
|
|
|
|
|
|
|
620 |
|
621 |
return history, ""
|
622 |
|
|
|
631 |
send_btn.click(
|
632 |
respond,
|
633 |
inputs=[msg_input, chatbot, doc_processed],
|
634 |
+
outputs=[chatbot, msg_input]
|
|
|
635 |
)
|
636 |
|
637 |
msg_input.submit(
|
638 |
respond,
|
639 |
inputs=[msg_input, chatbot, doc_processed],
|
640 |
+
outputs=[chatbot, msg_input]
|
|
|
641 |
)
|
642 |
|
643 |
return iface
|