Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import sqlite3 | |
import json | |
from PIL import Image, ImageDraw | |
# ------ Tool Implementations ------ | |
def get_recipe_by_ingredients(ingredients): | |
"""Find recipes based on available ingredients""" | |
return { | |
"recipes": [ | |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"}, | |
{"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"} | |
] | |
} | |
def get_recipe_image(recipe_name): | |
"""Generate an image of the finished recipe""" | |
# Create placeholder image | |
img = Image.new('RGB', (300, 200), color=(73, 109, 137)) | |
d = ImageDraw.Draw(img) | |
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0)) | |
return img | |
def convert_measurements(amount, from_unit, to_unit): | |
"""Convert cooking measurements between units""" | |
conversions = { | |
("tbsp", "tsp"): lambda x: x * 3, | |
("cups", "ml"): lambda x: x * 240, | |
("oz", "g"): lambda x: x * 28.35 | |
} | |
conversion_key = (from_unit.lower(), to_unit.lower()) | |
if conversion_key in conversions: | |
result = conversions[conversion_key](amount) | |
return {"result": round(result, 2), "unit": to_unit} | |
return {"error": "Conversion not supported"} | |
# ------ Recipe Database ------ | |
def init_recipe_db(): | |
conn = sqlite3.connect(':memory:') | |
c = conn.cursor() | |
c.execute('''CREATE TABLE recipes | |
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''') | |
recipes = [ | |
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]), | |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15), | |
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]), | |
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30), | |
("Chocolate Cake", json.dumps(["flour", "sugar", "cocoa", "eggs", "milk"]), | |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Bake at 350°F", 45) | |
] | |
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes) | |
conn.commit() | |
return conn | |
# ------ Agent Logic ------ | |
def process_query(query, db_conn): | |
"""Process user query""" | |
print(f"Processing query: {query}") | |
# Simple intent recognition | |
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower(): | |
ingredients = [word for word in ["eggs", "flour", "milk", "tomatoes"] if word in query.lower()] | |
if not ingredients: | |
ingredients = ["eggs", "flour"] | |
return { | |
"type": "recipes", | |
"data": get_recipe_by_ingredients(ingredients) | |
} | |
elif "image" in query.lower() or "show" in query.lower(): | |
recipe_name = next((r for r in ["pancakes", "soup", "cake"] if r in query.lower()), "pancakes") | |
return { | |
"type": "image", | |
"data": get_recipe_image(recipe_name) | |
} | |
elif "convert" in query.lower(): | |
words = query.split() | |
try: | |
amount = float(words[words.index("convert")+1]) | |
from_unit = words[words.index("convert")+2] | |
to_unit = words[words.index("to")+1] | |
except: | |
amount = 2 | |
from_unit = "cups" | |
to_unit = "ml" | |
return { | |
"type": "conversion", | |
"data": convert_measurements(amount, from_unit, to_unit) | |
} | |
else: | |
c = db_conn.cursor() | |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",)) | |
return { | |
"type": "db_recipes", | |
"data": c.fetchall() | |
} | |
# ------ Gradio Interface ------ | |
def process_voice_command(audio): | |
"""Process voice command""" | |
# For demo purposes, we'll use text input directly | |
# In a real implementation, this would convert audio to text | |
sample_rate, audio_data = audio | |
query = "What can I make with eggs and flour?" # Fixed for demo | |
# Initialize database on first run | |
if not hasattr(process_voice_command, "db_conn"): | |
process_voice_command.db_conn = init_recipe_db() | |
# Process query | |
result = process_query(query, process_voice_command.db_conn) | |
# Generate response | |
response_text = "" | |
image = None | |
if result["type"] == "recipes": | |
recipes = result["data"]["recipes"] | |
response_text = f"Found {len(recipes)} recipes:\n" | |
for recipe in recipes: | |
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n" | |
elif result["type"] == "image": | |
image = result["data"] | |
response_text = "Here's an image of the recipe!" | |
elif result["type"] == "conversion": | |
conv = result["data"] | |
response_text = f"Result: {conv.get('result', '?')} {conv.get('unit', '')}" + \ | |
(f"\nError: {conv['error']}" if "error" in conv else "") | |
elif result["type"] == "db_recipes": | |
recipes = result["data"] | |
response_text = f"Found {len(recipes)} recipes:\n" if recipes else "No recipes found." | |
for recipe in recipes: | |
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n" | |
# Return results (no audio in this simplified version) | |
return None, response_text, image | |
# ------ Create Gradio Interface ------ | |
with gr.Blocks(title="Culinary Voice Assistant") as demo: | |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant") | |
with gr.Row(): | |
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef") | |
with gr.Column(): | |
text_output = gr.Textbox(label="Assistant Response", interactive=False) | |
image_output = gr.Image(label="Recipe Image", interactive=False) | |
submit_btn = gr.Button("Process Command", variant="primary") | |
submit_btn.click( | |
fn=process_voice_command, | |
inputs=[audio_input], | |
outputs=[gr.Audio(visible=False), text_output, image_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |