Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,33 +2,11 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import sqlite3
|
4 |
import json
|
5 |
-
import time
|
6 |
from PIL import Image, ImageDraw
|
7 |
|
8 |
-
# ------ Mock MCP Server Implementation ------
|
9 |
-
class MockMCPServer:
|
10 |
-
def __init__(self):
|
11 |
-
self.tools = {}
|
12 |
-
|
13 |
-
def register_tool(self, name, func, description):
|
14 |
-
self.tools[name] = {
|
15 |
-
"function": func,
|
16 |
-
"description": description
|
17 |
-
}
|
18 |
-
|
19 |
-
def call_tool(self, tool_name, params):
|
20 |
-
if tool_name in self.tools:
|
21 |
-
return self.tools[tool_name]["function"](**params)
|
22 |
-
return {"error": f"Tool {tool_name} not found"}
|
23 |
-
|
24 |
-
# ------ Create Mock MCP Server ------
|
25 |
-
mcp_server = MockMCPServer()
|
26 |
-
|
27 |
# ------ Tool Implementations ------
|
28 |
def get_recipe_by_ingredients(ingredients):
|
29 |
"""Find recipes based on available ingredients"""
|
30 |
-
# In a real implementation, this would call an API
|
31 |
-
print(f"Searching recipes with ingredients: {ingredients}")
|
32 |
return {
|
33 |
"recipes": [
|
34 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
@@ -38,8 +16,7 @@ def get_recipe_by_ingredients(ingredients):
|
|
38 |
|
39 |
def get_recipe_image(recipe_name):
|
40 |
"""Generate an image of the finished recipe"""
|
41 |
-
|
42 |
-
# Create a placeholder image with the recipe name
|
43 |
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
44 |
d = ImageDraw.Draw(img)
|
45 |
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
|
@@ -47,7 +24,6 @@ def get_recipe_image(recipe_name):
|
|
47 |
|
48 |
def convert_measurements(amount, from_unit, to_unit):
|
49 |
"""Convert cooking measurements between units"""
|
50 |
-
print(f"Converting {amount} {from_unit} to {to_unit}")
|
51 |
conversions = {
|
52 |
("tbsp", "tsp"): lambda x: x * 3,
|
53 |
("cups", "ml"): lambda x: x * 240,
|
@@ -79,55 +55,27 @@ def init_recipe_db():
|
|
79 |
conn.commit()
|
80 |
return conn
|
81 |
|
82 |
-
# ------ Voice Processing Functions ------
|
83 |
-
def text_to_speech(text):
|
84 |
-
"""Mock TTS function - in real use, replace with actual TTS"""
|
85 |
-
print(f"[TTS]: {text}")
|
86 |
-
# Return dummy audio data (silence)
|
87 |
-
duration = 2 # seconds
|
88 |
-
sample_rate = 44100
|
89 |
-
samples = np.zeros(int(duration * sample_rate), dtype=np.float32)
|
90 |
-
return (sample_rate, samples)
|
91 |
-
|
92 |
-
def speech_to_text(audio):
|
93 |
-
"""Mock STT function - in real use, replace with actual STT"""
|
94 |
-
# For now, we return a fixed string. In reality, we would process the audio
|
95 |
-
sample_rate, audio_data = audio
|
96 |
-
print(f"Received audio with sample rate {sample_rate} and shape {audio_data.shape}")
|
97 |
-
# Return a fixed response for demo
|
98 |
-
return "What can I make with eggs and flour?"
|
99 |
-
|
100 |
# ------ Agent Logic ------
|
101 |
def process_query(query, db_conn):
|
102 |
-
"""Process user query
|
103 |
print(f"Processing query: {query}")
|
|
|
104 |
# Simple intent recognition
|
105 |
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
|
106 |
-
|
107 |
-
ingredients
|
108 |
-
|
109 |
-
if word in query.lower():
|
110 |
-
ingredients.append(word)
|
111 |
-
if not ingredients:
|
112 |
-
ingredients = ["eggs", "flour"] # default
|
113 |
return {
|
114 |
"type": "recipes",
|
115 |
-
"data":
|
116 |
}
|
117 |
-
elif "image" in query.lower() or "show" in query.lower()
|
118 |
-
|
119 |
-
recipe_name = "Classic Pancakes" # default
|
120 |
-
for recipe in ["pancakes", "stir fry", "tomato soup", "chocolate cake"]:
|
121 |
-
if recipe in query.lower():
|
122 |
-
recipe_name = recipe
|
123 |
-
break
|
124 |
return {
|
125 |
"type": "image",
|
126 |
-
"data":
|
127 |
}
|
128 |
elif "convert" in query.lower():
|
129 |
-
# Extract amount and units - very simple
|
130 |
-
# Assume pattern: convert <number> <unit> to <unit>
|
131 |
words = query.split()
|
132 |
try:
|
133 |
amount = float(words[words.index("convert")+1])
|
@@ -139,48 +87,32 @@ def process_query(query, db_conn):
|
|
139 |
to_unit = "ml"
|
140 |
return {
|
141 |
"type": "conversion",
|
142 |
-
"data":
|
143 |
}
|
144 |
else:
|
145 |
-
# Fallback to database search
|
146 |
c = db_conn.cursor()
|
147 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
148 |
-
recipes = c.fetchall()
|
149 |
return {
|
150 |
"type": "db_recipes",
|
151 |
-
"data":
|
152 |
}
|
153 |
|
154 |
-
# ------ Register Tools with MCP Server ------
|
155 |
-
mcp_server.register_tool(
|
156 |
-
"get_recipe_by_ingredients",
|
157 |
-
get_recipe_by_ingredients,
|
158 |
-
"Find recipes based on available ingredients"
|
159 |
-
)
|
160 |
-
mcp_server.register_tool(
|
161 |
-
"get_recipe_image",
|
162 |
-
get_recipe_image,
|
163 |
-
"Generate an image of the finished recipe"
|
164 |
-
)
|
165 |
-
mcp_server.register_tool(
|
166 |
-
"convert_measurements",
|
167 |
-
convert_measurements,
|
168 |
-
"Convert cooking measurements between units"
|
169 |
-
)
|
170 |
-
|
171 |
-
# ------ Initialize System ------
|
172 |
-
db_conn = init_recipe_db()
|
173 |
-
|
174 |
# ------ Gradio Interface ------
|
175 |
def process_voice_command(audio):
|
176 |
-
"""Process voice command
|
177 |
-
#
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
# Process query
|
181 |
-
result = process_query(query, db_conn)
|
182 |
|
183 |
-
# Generate response
|
184 |
response_text = ""
|
185 |
image = None
|
186 |
|
@@ -188,64 +120,39 @@ def process_voice_command(audio):
|
|
188 |
recipes = result["data"]["recipes"]
|
189 |
response_text = f"Found {len(recipes)} recipes:\n"
|
190 |
for recipe in recipes:
|
191 |
-
response_text += f"- {recipe['name']} ({recipe['time']} mins
|
192 |
elif result["type"] == "image":
|
193 |
-
image = result["data"]
|
194 |
-
response_text = "Here
|
195 |
elif result["type"] == "conversion":
|
196 |
conv = result["data"]
|
197 |
-
|
198 |
-
|
199 |
-
else:
|
200 |
-
response_text = f"{conv['result']} {conv['unit']}"
|
201 |
elif result["type"] == "db_recipes":
|
202 |
recipes = result["data"]
|
203 |
-
if recipes
|
204 |
-
|
205 |
-
|
206 |
-
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
|
207 |
-
else:
|
208 |
-
response_text = "No recipes found."
|
209 |
-
else:
|
210 |
-
response_text = "I'm not sure how to help with that."
|
211 |
-
|
212 |
-
# Convert response to audio
|
213 |
-
sr, audio_data = text_to_speech(response_text)
|
214 |
|
215 |
-
# Return results
|
216 |
-
return
|
217 |
|
218 |
-
# ------
|
219 |
-
with gr.Blocks(title="
|
220 |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
221 |
-
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
|
222 |
|
223 |
with gr.Row():
|
|
|
224 |
with gr.Column():
|
225 |
-
|
226 |
-
|
227 |
-
with gr.Column():
|
228 |
-
audio_output = gr.Audio(label="Assistant Response", interactive=False)
|
229 |
|
230 |
-
|
231 |
-
text_output = gr.Textbox(label="Transcription", interactive=False)
|
232 |
-
image_output = gr.Image(label="Recipe Image", interactive=False)
|
233 |
|
234 |
submit_btn.click(
|
235 |
fn=process_voice_command,
|
236 |
inputs=[audio_input],
|
237 |
-
outputs=[
|
238 |
-
)
|
239 |
-
|
240 |
-
gr.Examples(
|
241 |
-
examples=[
|
242 |
-
["What can I make with eggs and flour?"],
|
243 |
-
["Show me how tomato soup looks"],
|
244 |
-
["Convert 2 cups to milliliters"],
|
245 |
-
["Find chocolate cake recipes"]
|
246 |
-
],
|
247 |
-
inputs=[text_output],
|
248 |
-
label="Example Queries"
|
249 |
)
|
250 |
|
251 |
if __name__ == "__main__":
|
|
|
2 |
import numpy as np
|
3 |
import sqlite3
|
4 |
import json
|
|
|
5 |
from PIL import Image, ImageDraw
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# ------ Tool Implementations ------
|
8 |
def get_recipe_by_ingredients(ingredients):
|
9 |
"""Find recipes based on available ingredients"""
|
|
|
|
|
10 |
return {
|
11 |
"recipes": [
|
12 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
|
16 |
|
17 |
def get_recipe_image(recipe_name):
|
18 |
"""Generate an image of the finished recipe"""
|
19 |
+
# Create placeholder image
|
|
|
20 |
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
21 |
d = ImageDraw.Draw(img)
|
22 |
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
|
|
|
24 |
|
25 |
def convert_measurements(amount, from_unit, to_unit):
|
26 |
"""Convert cooking measurements between units"""
|
|
|
27 |
conversions = {
|
28 |
("tbsp", "tsp"): lambda x: x * 3,
|
29 |
("cups", "ml"): lambda x: x * 240,
|
|
|
55 |
conn.commit()
|
56 |
return conn
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# ------ Agent Logic ------
|
59 |
def process_query(query, db_conn):
|
60 |
+
"""Process user query"""
|
61 |
print(f"Processing query: {query}")
|
62 |
+
|
63 |
# Simple intent recognition
|
64 |
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
|
65 |
+
ingredients = [word for word in ["eggs", "flour", "milk", "tomatoes"] if word in query.lower()]
|
66 |
+
if not ingredients:
|
67 |
+
ingredients = ["eggs", "flour"]
|
|
|
|
|
|
|
|
|
68 |
return {
|
69 |
"type": "recipes",
|
70 |
+
"data": get_recipe_by_ingredients(ingredients)
|
71 |
}
|
72 |
+
elif "image" in query.lower() or "show" in query.lower():
|
73 |
+
recipe_name = next((r for r in ["pancakes", "soup", "cake"] if r in query.lower()), "pancakes")
|
|
|
|
|
|
|
|
|
|
|
74 |
return {
|
75 |
"type": "image",
|
76 |
+
"data": get_recipe_image(recipe_name)
|
77 |
}
|
78 |
elif "convert" in query.lower():
|
|
|
|
|
79 |
words = query.split()
|
80 |
try:
|
81 |
amount = float(words[words.index("convert")+1])
|
|
|
87 |
to_unit = "ml"
|
88 |
return {
|
89 |
"type": "conversion",
|
90 |
+
"data": convert_measurements(amount, from_unit, to_unit)
|
91 |
}
|
92 |
else:
|
|
|
93 |
c = db_conn.cursor()
|
94 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
|
|
95 |
return {
|
96 |
"type": "db_recipes",
|
97 |
+
"data": c.fetchall()
|
98 |
}
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# ------ Gradio Interface ------
|
101 |
def process_voice_command(audio):
|
102 |
+
"""Process voice command"""
|
103 |
+
# For demo purposes, we'll use text input directly
|
104 |
+
# In a real implementation, this would convert audio to text
|
105 |
+
sample_rate, audio_data = audio
|
106 |
+
query = "What can I make with eggs and flour?" # Fixed for demo
|
107 |
+
|
108 |
+
# Initialize database on first run
|
109 |
+
if not hasattr(process_voice_command, "db_conn"):
|
110 |
+
process_voice_command.db_conn = init_recipe_db()
|
111 |
|
112 |
+
# Process query
|
113 |
+
result = process_query(query, process_voice_command.db_conn)
|
114 |
|
115 |
+
# Generate response
|
116 |
response_text = ""
|
117 |
image = None
|
118 |
|
|
|
120 |
recipes = result["data"]["recipes"]
|
121 |
response_text = f"Found {len(recipes)} recipes:\n"
|
122 |
for recipe in recipes:
|
123 |
+
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
|
124 |
elif result["type"] == "image":
|
125 |
+
image = result["data"]
|
126 |
+
response_text = "Here's an image of the recipe!"
|
127 |
elif result["type"] == "conversion":
|
128 |
conv = result["data"]
|
129 |
+
response_text = f"Result: {conv.get('result', '?')} {conv.get('unit', '')}" + \
|
130 |
+
(f"\nError: {conv['error']}" if "error" in conv else "")
|
|
|
|
|
131 |
elif result["type"] == "db_recipes":
|
132 |
recipes = result["data"]
|
133 |
+
response_text = f"Found {len(recipes)} recipes:\n" if recipes else "No recipes found."
|
134 |
+
for recipe in recipes:
|
135 |
+
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Return results (no audio in this simplified version)
|
138 |
+
return None, response_text, image
|
139 |
|
140 |
+
# ------ Create Gradio Interface ------
|
141 |
+
with gr.Blocks(title="Culinary Voice Assistant") as demo:
|
142 |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
|
|
143 |
|
144 |
with gr.Row():
|
145 |
+
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef")
|
146 |
with gr.Column():
|
147 |
+
text_output = gr.Textbox(label="Assistant Response", interactive=False)
|
148 |
+
image_output = gr.Image(label="Recipe Image", interactive=False)
|
|
|
|
|
149 |
|
150 |
+
submit_btn = gr.Button("Process Command", variant="primary")
|
|
|
|
|
151 |
|
152 |
submit_btn.click(
|
153 |
fn=process_voice_command,
|
154 |
inputs=[audio_input],
|
155 |
+
outputs=[gr.Audio(visible=False), text_output, image_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
)
|
157 |
|
158 |
if __name__ == "__main__":
|