File size: 6,065 Bytes
2677642
 
 
 
1155ca4
2677642
7cd9628
 
2677642
 
 
 
 
 
 
 
7cd9628
2677642
a367b14
1155ca4
 
 
 
2677642
7cd9628
2677642
 
 
 
 
 
 
 
1155ca4
 
2677642
 
7cd9628
2677642
7cd9628
2677642
7cd9628
2677642
 
 
7cd9628
2677642
7cd9628
1155ca4
 
 
2677642
 
 
 
 
 
7cd9628
 
a367b14
1155ca4
a367b14
7cd9628
1155ca4
a367b14
 
 
1155ca4
 
a367b14
1155ca4
a367b14
 
1155ca4
 
a367b14
1155ca4
7cd9628
1155ca4
 
 
 
 
 
 
 
 
 
 
a367b14
1155ca4
7cd9628
 
 
1155ca4
 
a367b14
1155ca4
7cd9628
2677642
7cd9628
a367b14
 
 
 
 
 
 
 
 
2677642
a367b14
 
2677642
a367b14
1155ca4
 
 
 
 
 
 
a367b14
1155ca4
a367b14
 
1155ca4
 
a367b14
 
1155ca4
 
a367b14
 
 
7cd9628
a367b14
 
2677642
a367b14
 
1155ca4
2677642
 
a367b14
1155ca4
a367b14
 
2677642
a367b14
2677642
 
 
7cd9628
a367b14
2677642
 
 
7cd9628
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import sqlite3
import json
from PIL import Image, ImageDraw

# ------ Tool Implementations ------
def get_recipe_by_ingredients(ingredients):
    """Find recipes based on available ingredients"""
    return {
        "recipes": [
            {"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
            {"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"}
        ]
    }

def get_recipe_image(recipe_name):
    """Generate an image of the finished recipe"""
    # Create placeholder image
    img = Image.new('RGB', (300, 200), color=(73, 109, 137))
    d = ImageDraw.Draw(img)
    d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
    return img

def convert_measurements(amount, from_unit, to_unit):
    """Convert cooking measurements between units"""
    conversions = {
        ("tbsp", "tsp"): lambda x: x * 3,
        ("cups", "ml"): lambda x: x * 240,
        ("oz", "g"): lambda x: x * 28.35
    }
    conversion_key = (from_unit.lower(), to_unit.lower())
    if conversion_key in conversions:
        result = conversions[conversion_key](amount)
        return {"result": round(result, 2), "unit": to_unit}
    return {"error": "Conversion not supported"}

# ------ Recipe Database ------
def init_recipe_db():
    conn = sqlite3.connect(':memory:')
    c = conn.cursor()
    c.execute('''CREATE TABLE recipes
                 (id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''')
    
    recipes = [
        ("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]), 
         "1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
        ("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]), 
         "1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30),
        ("Chocolate Cake", json.dumps(["flour", "sugar", "cocoa", "eggs", "milk"]), 
         "1. Mix dry ingredients\n2. Add wet ingredients\n3. Bake at 350°F", 45)
    ]
    
    c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes)
    conn.commit()
    return conn

# ------ Agent Logic ------
def process_query(query, db_conn):
    """Process user query"""
    print(f"Processing query: {query}")
    
    # Simple intent recognition
    if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
        ingredients = [word for word in ["eggs", "flour", "milk", "tomatoes"] if word in query.lower()]
        if not ingredients: 
            ingredients = ["eggs", "flour"]
        return {
            "type": "recipes",
            "data": get_recipe_by_ingredients(ingredients)
        }
    elif "image" in query.lower() or "show" in query.lower():
        recipe_name = next((r for r in ["pancakes", "soup", "cake"] if r in query.lower()), "pancakes")
        return {
            "type": "image",
            "data": get_recipe_image(recipe_name)
        }
    elif "convert" in query.lower():
        words = query.split()
        try:
            amount = float(words[words.index("convert")+1])
            from_unit = words[words.index("convert")+2]
            to_unit = words[words.index("to")+1]
        except:
            amount = 2
            from_unit = "cups"
            to_unit = "ml"
        return {
            "type": "conversion",
            "data": convert_measurements(amount, from_unit, to_unit)
        }
    else:
        c = db_conn.cursor()
        c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
        return {
            "type": "db_recipes",
            "data": c.fetchall()
        }

# ------ Gradio Interface ------
def process_voice_command(audio):
    """Process voice command"""
    # For demo purposes, we'll use text input directly
    # In a real implementation, this would convert audio to text
    sample_rate, audio_data = audio
    query = "What can I make with eggs and flour?"  # Fixed for demo
    
    # Initialize database on first run
    if not hasattr(process_voice_command, "db_conn"):
        process_voice_command.db_conn = init_recipe_db()
    
    # Process query
    result = process_query(query, process_voice_command.db_conn)
    
    # Generate response
    response_text = ""
    image = None
    
    if result["type"] == "recipes":
        recipes = result["data"]["recipes"]
        response_text = f"Found {len(recipes)} recipes:\n"
        for recipe in recipes:
            response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
    elif result["type"] == "image":
        image = result["data"]
        response_text = "Here's an image of the recipe!"
    elif result["type"] == "conversion":
        conv = result["data"]
        response_text = f"Result: {conv.get('result', '?')} {conv.get('unit', '')}" + \
                       (f"\nError: {conv['error']}" if "error" in conv else "")
    elif result["type"] == "db_recipes":
        recipes = result["data"]
        response_text = f"Found {len(recipes)} recipes:\n" if recipes else "No recipes found."
        for recipe in recipes:
            response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
    
    # Return results (no audio in this simplified version)
    return None, response_text, image

# ------ Create Gradio Interface ------
with gr.Blocks(title="Culinary Voice Assistant") as demo:
    gr.Markdown("# 🧑‍🍳 MCP-Powered Culinary Voice Assistant")
    
    with gr.Row():
        audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef")
        with gr.Column():
            text_output = gr.Textbox(label="Assistant Response", interactive=False)
            image_output = gr.Image(label="Recipe Image", interactive=False)
    
    submit_btn = gr.Button("Process Command", variant="primary")
    
    submit_btn.click(
        fn=process_voice_command,
        inputs=[audio_input],
        outputs=[gr.Audio(visible=False), text_output, image_output]
    )

if __name__ == "__main__":
    demo.launch()