Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
-
# MCP-Powered Voice Assistant with Open-Source Tools
|
2 |
-
# Hugging Face Space Implementation
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import sqlite3
|
7 |
import json
|
8 |
-
import requests
|
9 |
-
from PIL import Image
|
10 |
-
import io
|
11 |
import time
|
|
|
12 |
|
13 |
# ------ Mock MCP Server Implementation ------
|
14 |
class MockMCPServer:
|
@@ -33,6 +28,7 @@ mcp_server = MockMCPServer()
|
|
33 |
def get_recipe_by_ingredients(ingredients):
|
34 |
"""Find recipes based on available ingredients"""
|
35 |
# In a real implementation, this would call an API
|
|
|
36 |
return {
|
37 |
"recipes": [
|
38 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
@@ -42,14 +38,16 @@ def get_recipe_by_ingredients(ingredients):
|
|
42 |
|
43 |
def get_recipe_image(recipe_name):
|
44 |
"""Generate an image of the finished recipe"""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
}
|
|
|
50 |
|
51 |
def convert_measurements(amount, from_unit, to_unit):
|
52 |
"""Convert cooking measurements between units"""
|
|
|
53 |
conversions = {
|
54 |
("tbsp", "tsp"): lambda x: x * 3,
|
55 |
("cups", "ml"): lambda x: x * 240,
|
@@ -57,7 +55,8 @@ def convert_measurements(amount, from_unit, to_unit):
|
|
57 |
}
|
58 |
conversion_key = (from_unit.lower(), to_unit.lower())
|
59 |
if conversion_key in conversions:
|
60 |
-
|
|
|
61 |
return {"error": "Conversion not supported"}
|
62 |
|
63 |
# ------ Recipe Database ------
|
@@ -71,7 +70,9 @@ def init_recipe_db():
|
|
71 |
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]),
|
72 |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
|
73 |
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]),
|
74 |
-
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30)
|
|
|
|
|
75 |
]
|
76 |
|
77 |
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes)
|
@@ -82,42 +83,73 @@ def init_recipe_db():
|
|
82 |
def text_to_speech(text):
|
83 |
"""Mock TTS function - in real use, replace with actual TTS"""
|
84 |
print(f"[TTS]: {text}")
|
85 |
-
# Return dummy audio data
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
def speech_to_text(audio):
|
89 |
"""Mock STT function - in real use, replace with actual STT"""
|
90 |
-
#
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
# ------ Agent Logic ------
|
94 |
def process_query(query, db_conn):
|
95 |
"""Process user query using the available tools"""
|
|
|
96 |
# Simple intent recognition
|
97 |
-
if "recipe" in query.lower() or "make" in query.lower():
|
98 |
-
# Extract ingredients
|
99 |
-
ingredients = [
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
elif "convert" in query.lower():
|
111 |
-
#
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
else:
|
117 |
# Fallback to database search
|
118 |
c = db_conn.cursor()
|
119 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# ------ Register Tools with MCP Server ------
|
123 |
mcp_server.register_tool(
|
@@ -148,48 +180,57 @@ def process_voice_command(audio):
|
|
148 |
# Process query using agent logic
|
149 |
result = process_query(query, db_conn)
|
150 |
|
151 |
-
# Generate response text
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
response_text = f"Found {len(
|
158 |
-
for recipe in
|
159 |
-
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
|
160 |
-
elif "
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
-
response_text =
|
165 |
-
image = None
|
166 |
|
167 |
# Convert response to audio
|
168 |
-
|
169 |
|
170 |
-
# Return results
|
171 |
-
return (
|
172 |
-
(sr, audio_data),
|
173 |
-
response_text,
|
174 |
-
image if 'image' in locals() else None
|
175 |
-
)
|
176 |
|
177 |
# ------ Hugging Face Space UI ------
|
178 |
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
179 |
-
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant
|
180 |
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
|
181 |
|
182 |
with gr.Row():
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
|
186 |
with gr.Row():
|
187 |
text_output = gr.Textbox(label="Transcription", interactive=False)
|
188 |
image_output = gr.Image(label="Recipe Image", interactive=False)
|
189 |
|
190 |
-
with gr.Row():
|
191 |
-
submit_btn = gr.Button("Process Command", variant="primary")
|
192 |
-
|
193 |
submit_btn.click(
|
194 |
fn=process_voice_command,
|
195 |
inputs=[audio_input],
|
@@ -200,7 +241,8 @@ with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
|
200 |
examples=[
|
201 |
["What can I make with eggs and flour?"],
|
202 |
["Show me how tomato soup looks"],
|
203 |
-
["Convert 2 cups to milliliters"]
|
|
|
204 |
],
|
205 |
inputs=[text_output],
|
206 |
label="Example Queries"
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import sqlite3
|
4 |
import json
|
|
|
|
|
|
|
5 |
import time
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
|
8 |
# ------ Mock MCP Server Implementation ------
|
9 |
class MockMCPServer:
|
|
|
28 |
def get_recipe_by_ingredients(ingredients):
|
29 |
"""Find recipes based on available ingredients"""
|
30 |
# In a real implementation, this would call an API
|
31 |
+
print(f"Searching recipes with ingredients: {ingredients}")
|
32 |
return {
|
33 |
"recipes": [
|
34 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
|
38 |
|
39 |
def get_recipe_image(recipe_name):
|
40 |
"""Generate an image of the finished recipe"""
|
41 |
+
print(f"Generating image for: {recipe_name}")
|
42 |
+
# Create a placeholder image with the recipe name
|
43 |
+
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
44 |
+
d = ImageDraw.Draw(img)
|
45 |
+
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
|
46 |
+
return img
|
47 |
|
48 |
def convert_measurements(amount, from_unit, to_unit):
|
49 |
"""Convert cooking measurements between units"""
|
50 |
+
print(f"Converting {amount} {from_unit} to {to_unit}")
|
51 |
conversions = {
|
52 |
("tbsp", "tsp"): lambda x: x * 3,
|
53 |
("cups", "ml"): lambda x: x * 240,
|
|
|
55 |
}
|
56 |
conversion_key = (from_unit.lower(), to_unit.lower())
|
57 |
if conversion_key in conversions:
|
58 |
+
result = conversions[conversion_key](amount)
|
59 |
+
return {"result": round(result, 2), "unit": to_unit}
|
60 |
return {"error": "Conversion not supported"}
|
61 |
|
62 |
# ------ Recipe Database ------
|
|
|
70 |
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]),
|
71 |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
|
72 |
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]),
|
73 |
+
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30),
|
74 |
+
("Chocolate Cake", json.dumps(["flour", "sugar", "cocoa", "eggs", "milk"]),
|
75 |
+
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Bake at 350°F", 45)
|
76 |
]
|
77 |
|
78 |
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes)
|
|
|
83 |
def text_to_speech(text):
|
84 |
"""Mock TTS function - in real use, replace with actual TTS"""
|
85 |
print(f"[TTS]: {text}")
|
86 |
+
# Return dummy audio data (silence)
|
87 |
+
duration = 2 # seconds
|
88 |
+
sample_rate = 44100
|
89 |
+
samples = np.zeros(int(duration * sample_rate), dtype=np.float32)
|
90 |
+
return (sample_rate, samples)
|
91 |
|
92 |
def speech_to_text(audio):
|
93 |
"""Mock STT function - in real use, replace with actual STT"""
|
94 |
+
# For now, we return a fixed string. In reality, we would process the audio
|
95 |
+
sample_rate, audio_data = audio
|
96 |
+
print(f"Received audio with sample rate {sample_rate} and shape {audio_data.shape}")
|
97 |
+
# Return a fixed response for demo
|
98 |
+
return "What can I make with eggs and flour?"
|
99 |
|
100 |
# ------ Agent Logic ------
|
101 |
def process_query(query, db_conn):
|
102 |
"""Process user query using the available tools"""
|
103 |
+
print(f"Processing query: {query}")
|
104 |
# Simple intent recognition
|
105 |
+
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
|
106 |
+
# Extract ingredients - very simple, just use some keywords
|
107 |
+
ingredients = []
|
108 |
+
for word in ["eggs", "flour", "milk", "tomatoes", "onion", "garlic"]:
|
109 |
+
if word in query.lower():
|
110 |
+
ingredients.append(word)
|
111 |
+
if not ingredients:
|
112 |
+
ingredients = ["eggs", "flour"] # default
|
113 |
+
return {
|
114 |
+
"type": "recipes",
|
115 |
+
"data": mcp_server.call_tool("get_recipe_by_ingredients", {"ingredients": ingredients})
|
116 |
+
}
|
117 |
+
elif "image" in query.lower() or "show" in query.lower() or "look" in query.lower():
|
118 |
+
# Extract recipe name
|
119 |
+
recipe_name = "Classic Pancakes" # default
|
120 |
+
for recipe in ["pancakes", "stir fry", "tomato soup", "chocolate cake"]:
|
121 |
+
if recipe in query.lower():
|
122 |
+
recipe_name = recipe
|
123 |
+
break
|
124 |
+
return {
|
125 |
+
"type": "image",
|
126 |
+
"data": mcp_server.call_tool("get_recipe_image", {"recipe_name": recipe_name})
|
127 |
+
}
|
128 |
elif "convert" in query.lower():
|
129 |
+
# Extract amount and units - very simple
|
130 |
+
# Assume pattern: convert <number> <unit> to <unit>
|
131 |
+
words = query.split()
|
132 |
+
try:
|
133 |
+
amount = float(words[words.index("convert")+1])
|
134 |
+
from_unit = words[words.index("convert")+2]
|
135 |
+
to_unit = words[words.index("to")+1]
|
136 |
+
except:
|
137 |
+
amount = 2
|
138 |
+
from_unit = "cups"
|
139 |
+
to_unit = "ml"
|
140 |
+
return {
|
141 |
+
"type": "conversion",
|
142 |
+
"data": mcp_server.call_tool("convert_measurements", {"amount": amount, "from_unit": from_unit, "to_unit": to_unit})
|
143 |
+
}
|
144 |
else:
|
145 |
# Fallback to database search
|
146 |
c = db_conn.cursor()
|
147 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
148 |
+
recipes = c.fetchall()
|
149 |
+
return {
|
150 |
+
"type": "db_recipes",
|
151 |
+
"data": recipes
|
152 |
+
}
|
153 |
|
154 |
# ------ Register Tools with MCP Server ------
|
155 |
mcp_server.register_tool(
|
|
|
180 |
# Process query using agent logic
|
181 |
result = process_query(query, db_conn)
|
182 |
|
183 |
+
# Generate response text and image
|
184 |
+
response_text = ""
|
185 |
+
image = None
|
186 |
+
|
187 |
+
if result["type"] == "recipes":
|
188 |
+
recipes = result["data"]["recipes"]
|
189 |
+
response_text = f"Found {len(recipes)} recipes:\n"
|
190 |
+
for recipe in recipes:
|
191 |
+
response_text += f"- {recipe['name']} ({recipe['time']} mins, {recipe['difficulty']})\n"
|
192 |
+
elif result["type"] == "image":
|
193 |
+
image = result["data"] # This is a PIL image
|
194 |
+
response_text = "Here is an image of the recipe!"
|
195 |
+
elif result["type"] == "conversion":
|
196 |
+
conv = result["data"]
|
197 |
+
if "error" in conv:
|
198 |
+
response_text = f"Error: {conv['error']}"
|
199 |
+
else:
|
200 |
+
response_text = f"{conv['result']} {conv['unit']}"
|
201 |
+
elif result["type"] == "db_recipes":
|
202 |
+
recipes = result["data"]
|
203 |
+
if recipes:
|
204 |
+
response_text = f"Found {len(recipes)} recipes in database:\n"
|
205 |
+
for recipe in recipes:
|
206 |
+
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
|
207 |
+
else:
|
208 |
+
response_text = "No recipes found."
|
209 |
else:
|
210 |
+
response_text = "I'm not sure how to help with that."
|
|
|
211 |
|
212 |
# Convert response to audio
|
213 |
+
sr, audio_data = text_to_speech(response_text)
|
214 |
|
215 |
+
# Return results: audio output, text, and image
|
216 |
+
return (sr, audio_data), response_text, image
|
|
|
|
|
|
|
|
|
217 |
|
218 |
# ------ Hugging Face Space UI ------
|
219 |
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
220 |
+
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
221 |
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
|
222 |
|
223 |
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant")
|
226 |
+
submit_btn = gr.Button("Process Command", variant="primary")
|
227 |
+
with gr.Column():
|
228 |
+
audio_output = gr.Audio(label="Assistant Response", interactive=False)
|
229 |
|
230 |
with gr.Row():
|
231 |
text_output = gr.Textbox(label="Transcription", interactive=False)
|
232 |
image_output = gr.Image(label="Recipe Image", interactive=False)
|
233 |
|
|
|
|
|
|
|
234 |
submit_btn.click(
|
235 |
fn=process_voice_command,
|
236 |
inputs=[audio_input],
|
|
|
241 |
examples=[
|
242 |
["What can I make with eggs and flour?"],
|
243 |
["Show me how tomato soup looks"],
|
244 |
+
["Convert 2 cups to milliliters"],
|
245 |
+
["Find chocolate cake recipes"]
|
246 |
],
|
247 |
inputs=[text_output],
|
248 |
label="Example Queries"
|