File size: 7,985 Bytes
2f64eb3
d49524c
2f64eb3
d49524c
 
 
 
 
 
 
 
 
 
 
2f64eb3
d49524c
 
6a197e4
d49524c
 
 
cecea85
d49524c
cecea85
 
6a197e4
 
 
 
 
 
 
 
2aa4dcf
 
 
 
 
6a197e4
 
d49524c
6a197e4
 
 
d49524c
 
6a197e4
d49524c
2aa4dcf
 
 
 
 
cecea85
 
d49524c
6a197e4
d49524c
cecea85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f64eb3
d49524c
cecea85
2f64eb3
d49524c
2f64eb3
cecea85
2f64eb3
 
cecea85
2f64eb3
d49524c
cecea85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49524c
 
 
 
 
 
 
cecea85
d49524c
 
cecea85
d49524c
cecea85
 
 
 
 
 
 
d49524c
cecea85
 
2f64eb3
cecea85
 
 
2f64eb3
cecea85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49524c
 
 
cecea85
d49524c
2f64eb3
 
d49524c
2f64eb3
 
 
 
d49524c
2f64eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49524c
2f64eb3
 
cecea85
2f64eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cecea85
2f64eb3
d49524c
 
2f64eb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# app.py - Gradio version (much simpler for HF Spaces)

import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables for model and tokenizer
model = None
tokenizer = None
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}

def load_model():
    """Load your trained LoRA adapter with base model"""
    global model, tokenizer
    
    try:
        from peft import AutoPeftModelForCausalLM  # Changed from SequenceClassification
        
        # Load the LoRA adapter model for text generation
        model = AutoPeftModelForCausalLM.from_pretrained(
            "./lora_adapter",  # Path to your adapter files
            torch_dtype=torch.float16,
            device_map="auto"
        )
        
        # Load tokenizer from the same directory
        tokenizer = AutoTokenizer.from_pretrained("./lora_adapter")
        
        # Fix padding token issue
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            logger.info("Set pad_token to eos_token")
        
        logger.info("LoRA model loaded successfully")
        return "LoRA model loaded successfully!"
        
    except Exception as e:
        logger.error(f"Error loading LoRA model: {e}")
        # Fallback to placeholder for testing
        logger.warning("Using placeholder model loading - replace with your actual model!")
        
        model_name = "microsoft/DialoGPT-medium"  # Closer to Phi-4 architecture
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        
        # Fix padding token for fallback model too
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        from transformers import AutoModelForCausalLM
        model = AutoModelForCausalLM.from_pretrained(model_name)
        
        return f"Fallback model loaded. LoRA error: {e}"

def get_system_prompt():
    """Generates the specific system prompt for the fine-tuning task."""
    return """You are a mathematics tutor.
You are given a math word problem, and a solution written by a student.
Analyze the solution carefully, line-by-line, and classify it into one of the following categories:
- Correct (All logic is correct, and all calculations are correct)
- Conceptual Error (There is an error in reasoning or logic somewhere in the solution)
- Computational Error (All logic and reasoning is correct, but the result of some calculation is incorrect)
Respond *only* with a valid JSON object that follows this exact schema:
```json
{
  "verdict": "must be one of 'correct', 'conceptual_error', or 'computational_error'",
  "erroneous_line": "the exact, verbatim text of the first incorrect line, or null if the verdict is 'correct'",
  "explanation": "a brief, one-sentence explanation of the error, or null if the verdict is 'correct'"
}
```
Do NOT add any text or explanations before or after the JSON object.
"""

def classify_solution(question: str, solution: str):
    """
    Classify the math solution using the exact training format
    Returns: (classification_label, confidence_score, explanation)
    """
    if not question.strip() or not solution.strip():
        return "Please fill in both fields", "", ""
    
    if not model or not tokenizer:
        return "Model not loaded", "", ""
    
    try:
        # Create the exact prompt format used in training
        system_prompt = get_system_prompt()
        user_message = f"Problem: {question}\n\nSolution:\n{solution}"
        
        # Format as chat messages (common for instruction-tuned models)
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_message}
        ]
        
        # Apply chat template
        text_input = tokenizer.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_token=True
        )
        
        # Tokenize input
        inputs = tokenizer(
            text_input,
            return_tensors="pt",
            truncation=True,
            padding=True,
            max_length=2048  # Increased for longer prompts
        )
        
        # Generate response (not just classify)
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=200,
                temperature=0.1,
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id
            )
        
        # Decode the generated response
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract just the JSON response (after the input)
        response_start = generated_text.find(text_input) + len(text_input)
        json_response = generated_text[response_start:].strip()
        
        # Parse the JSON response
        import json
        try:
            result = json.loads(json_response)
            verdict = result.get("verdict", "unknown")
            erroneous_line = result.get("erroneous_line", "")
            explanation = result.get("explanation", "")
            
            # Map verdict to display format
            verdict_mapping = {
                "correct": "✅ Correct",
                "conceptual_error": "🤔 Conceptual Error", 
                "computational_error": "🔢 Computational Error"
            }
            
            display_verdict = verdict_mapping.get(verdict, f"❓ {verdict}")
            
            return display_verdict, erroneous_line or "None", explanation or "Solution is correct"
            
        except json.JSONDecodeError:
            return f"Model response: {json_response}", "", "Could not parse JSON response"
        
    except Exception as e:
        logger.error(f"Error during classification: {e}")
        return f"Classification error: {str(e)}", "", ""

# Load model on startup
load_model()

# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🧮 Math Solution Classifier")
    gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
    
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(
                label="Math Question",
                placeholder="e.g., Solve for x: 2x + 5 = 13",
                lines=3
            )
            
            solution_input = gr.Textbox(
                label="Proposed Solution", 
                placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
                lines=5
            )
            
            classify_btn = gr.Button("Classify Solution", variant="primary")
        
        with gr.Column():
            classification_output = gr.Textbox(label="Classification", interactive=False)
            erroneous_line_output = gr.Textbox(label="Erroneous Line", interactive=False)
            explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
    
    # Examples
    gr.Examples(
        examples=[
            [
                "Solve for x: 2x + 5 = 13",
                "2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
            ],
            [
                "Find the derivative of f(x) = x²", 
                "f'(x) = 2x + 1"  # This should be computationally flawed
            ],
            [
                "What is 15% of 200?",
                "15% = 15/100 = 0.15\n0.15 × 200 = 30"
            ]
        ],
        inputs=[question_input, solution_input]
    )
    
    classify_btn.click(
        fn=classify_solution,
        inputs=[question_input, solution_input],
        outputs=[classification_output, erroneous_line_output, explanation_output]
    )

if __name__ == "__main__":
    app.launch()