Upload 2 files
Browse files
README.md
CHANGED
@@ -1,8 +1,32 @@
|
|
|
|
|
|
1 |
title: Math Solution Classifier
|
2 |
emoji: 🧮
|
3 |
colorFrom: blue
|
4 |
colorTo: purple
|
5 |
sdk: gradio
|
6 |
-
sdk_version: 4.
|
7 |
app_file: app.py
|
8 |
-
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# README.md for your Hugging Face Space
|
2 |
+
---
|
3 |
title: Math Solution Classifier
|
4 |
emoji: 🧮
|
5 |
colorFrom: blue
|
6 |
colorTo: purple
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 4.44.0
|
9 |
app_file: app.py
|
10 |
+
pinned: false
|
11 |
+
---
|
12 |
+
|
13 |
+
# Math Solution Classifier
|
14 |
+
|
15 |
+
This application classifies math solutions into three categories:
|
16 |
+
- **Correct**: Solution is mathematically sound
|
17 |
+
- **Conceptually Flawed**: Wrong approach or understanding
|
18 |
+
- **Computationally Flawed**: Right approach, calculation errors
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
1. Enter a math question
|
23 |
+
2. Enter the proposed solution
|
24 |
+
3. Click "Classify Solution"
|
25 |
+
4. Get instant feedback on the solution quality
|
26 |
+
|
27 |
+
Built with Gradio and your custom trained model.
|
28 |
+
|
29 |
+
# requirements.txt
|
30 |
+
gradio==4.44.0
|
31 |
+
torch==2.1.0
|
32 |
+
transformers==4.35.0
|
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
-
# app.py -
|
2 |
|
3 |
-
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
from fastapi.staticfiles import StaticFiles
|
6 |
-
from fastapi.responses import FileResponse
|
7 |
-
from pydantic import BaseModel
|
8 |
import torch
|
9 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
10 |
import logging
|
@@ -13,29 +9,10 @@ import logging
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
app = FastAPI(title="Math Solution Classifier API")
|
17 |
-
|
18 |
-
# Add CORS middleware
|
19 |
-
app.add_middleware(
|
20 |
-
CORSMiddleware,
|
21 |
-
allow_origins=["*"],
|
22 |
-
allow_credentials=True,
|
23 |
-
allow_methods=["*"],
|
24 |
-
allow_headers=["*"],
|
25 |
-
)
|
26 |
-
|
27 |
# Global variables for model and tokenizer
|
28 |
model = None
|
29 |
tokenizer = None
|
30 |
-
label_mapping = {0: "
|
31 |
-
|
32 |
-
class ClassificationRequest(BaseModel):
|
33 |
-
question: str
|
34 |
-
solution: str
|
35 |
-
|
36 |
-
class ClassificationResponse(BaseModel):
|
37 |
-
classification: str
|
38 |
-
confidence: float
|
39 |
|
40 |
def load_model():
|
41 |
"""Load your trained model here"""
|
@@ -64,16 +41,23 @@ def load_model():
|
|
64 |
)
|
65 |
|
66 |
logger.info("Model loaded successfully")
|
|
|
67 |
|
68 |
except Exception as e:
|
69 |
logger.error(f"Error loading model: {e}")
|
70 |
-
|
71 |
|
72 |
-
def classify_solution(question: str, solution: str)
|
73 |
"""
|
74 |
Classify the math solution
|
75 |
-
Returns: (classification_label, confidence_score)
|
76 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
# Combine question and solution for input
|
79 |
text_input = f"Question: {question}\nSolution: {solution}"
|
@@ -96,53 +80,74 @@ def classify_solution(question: str, solution: str) -> tuple:
|
|
96 |
|
97 |
classification = label_mapping[predicted_class]
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
except Exception as e:
|
102 |
logger.error(f"Error during classification: {e}")
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
"""Load model on startup"""
|
108 |
-
logger.info("Loading model...")
|
109 |
-
load_model()
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
""
|
114 |
-
Classify
|
115 |
-
"""
|
116 |
-
if not model or not tokenizer:
|
117 |
-
raise HTTPException(status_code=503, detail="Model not loaded")
|
118 |
-
|
119 |
-
if not request.question.strip() or not request.solution.strip():
|
120 |
-
raise HTTPException(status_code=400, detail="Both question and solution are required")
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
-
|
148 |
-
uvicorn.run(app, host="0.0.0.0", port=7860) # Port 7860 is standard for HF Spaces
|
|
|
1 |
+
# app.py - Gradio version (much simpler for HF Spaces)
|
2 |
|
3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
import logging
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Global variables for model and tokenizer
|
13 |
model = None
|
14 |
tokenizer = None
|
15 |
+
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def load_model():
|
18 |
"""Load your trained model here"""
|
|
|
41 |
)
|
42 |
|
43 |
logger.info("Model loaded successfully")
|
44 |
+
return "Model loaded successfully!"
|
45 |
|
46 |
except Exception as e:
|
47 |
logger.error(f"Error loading model: {e}")
|
48 |
+
return f"Error loading model: {e}"
|
49 |
|
50 |
+
def classify_solution(question: str, solution: str):
|
51 |
"""
|
52 |
Classify the math solution
|
53 |
+
Returns: (classification_label, confidence_score, explanation)
|
54 |
"""
|
55 |
+
if not question.strip() or not solution.strip():
|
56 |
+
return "Please fill in both fields", 0.0, ""
|
57 |
+
|
58 |
+
if not model or not tokenizer:
|
59 |
+
return "Model not loaded", 0.0, ""
|
60 |
+
|
61 |
try:
|
62 |
# Combine question and solution for input
|
63 |
text_input = f"Question: {question}\nSolution: {solution}"
|
|
|
80 |
|
81 |
classification = label_mapping[predicted_class]
|
82 |
|
83 |
+
# Create explanation based on classification
|
84 |
+
explanations = {
|
85 |
+
0: "The mathematical approach and calculations are both sound.",
|
86 |
+
1: "The approach or understanding has fundamental issues.",
|
87 |
+
2: "The approach is correct, but there are calculation errors."
|
88 |
+
}
|
89 |
+
|
90 |
+
explanation = explanations[predicted_class]
|
91 |
+
|
92 |
+
return classification, f"{confidence:.2%}", explanation
|
93 |
|
94 |
except Exception as e:
|
95 |
logger.error(f"Error during classification: {e}")
|
96 |
+
return f"Classification error: {str(e)}", "0%", ""
|
97 |
|
98 |
+
# Load model on startup
|
99 |
+
load_model()
|
|
|
|
|
|
|
100 |
|
101 |
+
# Create Gradio interface
|
102 |
+
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
|
103 |
+
gr.Markdown("# 🧮 Math Solution Classifier")
|
104 |
+
gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
question_input = gr.Textbox(
|
109 |
+
label="Math Question",
|
110 |
+
placeholder="e.g., Solve for x: 2x + 5 = 13",
|
111 |
+
lines=3
|
112 |
+
)
|
113 |
+
|
114 |
+
solution_input = gr.Textbox(
|
115 |
+
label="Proposed Solution",
|
116 |
+
placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
|
117 |
+
lines=5
|
118 |
+
)
|
119 |
+
|
120 |
+
classify_btn = gr.Button("Classify Solution", variant="primary")
|
121 |
|
122 |
+
with gr.Column():
|
123 |
+
classification_output = gr.Textbox(label="Classification", interactive=False)
|
124 |
+
confidence_output = gr.Textbox(label="Confidence", interactive=False)
|
125 |
+
explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
|
126 |
+
|
127 |
+
# Examples
|
128 |
+
gr.Examples(
|
129 |
+
examples=[
|
130 |
+
[
|
131 |
+
"Solve for x: 2x + 5 = 13",
|
132 |
+
"2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
|
133 |
+
],
|
134 |
+
[
|
135 |
+
"Find the derivative of f(x) = x²",
|
136 |
+
"f'(x) = 2x + 1" # This should be computationally flawed
|
137 |
+
],
|
138 |
+
[
|
139 |
+
"What is 15% of 200?",
|
140 |
+
"15% = 15/100 = 0.15\n0.15 × 200 = 30"
|
141 |
+
]
|
142 |
+
],
|
143 |
+
inputs=[question_input, solution_input]
|
144 |
+
)
|
145 |
+
|
146 |
+
classify_btn.click(
|
147 |
+
fn=classify_solution,
|
148 |
+
inputs=[question_input, solution_input],
|
149 |
+
outputs=[classification_output, confidence_output, explanation_output]
|
150 |
+
)
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
app.launch()
|
|