Upload 5 files
Browse files- README.md +8 -13
- app.py +148 -0
- deployment_files.py +49 -0
- requirements.txt +6 -0
- static/index.html +314 -0
README.md
CHANGED
@@ -1,13 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
pinned: false
|
10 |
-
short_description: Model for classifying solutions to math problems
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
title: Math Solution Classifier
|
2 |
+
emoji: 🧮
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: purple
|
5 |
+
sdk: gradio
|
6 |
+
sdk_version: 4.7.1
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - FastAPI backend for Math Solution Classifier
|
2 |
+
|
3 |
+
from fastapi import FastAPI, HTTPException
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from fastapi.staticfiles import StaticFiles
|
6 |
+
from fastapi.responses import FileResponse
|
7 |
+
from pydantic import BaseModel
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
10 |
+
import logging
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
app = FastAPI(title="Math Solution Classifier API")
|
17 |
+
|
18 |
+
# Add CORS middleware
|
19 |
+
app.add_middleware(
|
20 |
+
CORSMiddleware,
|
21 |
+
allow_origins=["*"],
|
22 |
+
allow_credentials=True,
|
23 |
+
allow_methods=["*"],
|
24 |
+
allow_headers=["*"],
|
25 |
+
)
|
26 |
+
|
27 |
+
# Global variables for model and tokenizer
|
28 |
+
model = None
|
29 |
+
tokenizer = None
|
30 |
+
label_mapping = {0: "correct", 1: "conceptually-flawed", 2: "computationally-flawed"}
|
31 |
+
|
32 |
+
class ClassificationRequest(BaseModel):
|
33 |
+
question: str
|
34 |
+
solution: str
|
35 |
+
|
36 |
+
class ClassificationResponse(BaseModel):
|
37 |
+
classification: str
|
38 |
+
confidence: float
|
39 |
+
|
40 |
+
def load_model():
|
41 |
+
"""Load your trained model here"""
|
42 |
+
global model, tokenizer
|
43 |
+
|
44 |
+
try:
|
45 |
+
# Replace these with your actual model path/name
|
46 |
+
# Option 1: Load from local files
|
47 |
+
# model = AutoModelForSequenceClassification.from_pretrained("./your_model_directory")
|
48 |
+
# tokenizer = AutoTokenizer.from_pretrained("./your_model_directory")
|
49 |
+
|
50 |
+
# Option 2: Load from Hugging Face Hub (if you upload your model there)
|
51 |
+
# model = AutoModelForSequenceClassification.from_pretrained("your-username/your-model-name")
|
52 |
+
# tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
|
53 |
+
|
54 |
+
# For now, we'll use a placeholder - replace this with your actual model loading
|
55 |
+
logger.warning("Using placeholder model loading - replace with your actual model!")
|
56 |
+
|
57 |
+
# Placeholder model loading (replace this!)
|
58 |
+
model_name = "distilbert-base-uncased" # Replace with your model
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
num_labels=3,
|
63 |
+
ignore_mismatched_sizes=True
|
64 |
+
)
|
65 |
+
|
66 |
+
logger.info("Model loaded successfully")
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"Error loading model: {e}")
|
70 |
+
raise
|
71 |
+
|
72 |
+
def classify_solution(question: str, solution: str) -> tuple:
|
73 |
+
"""
|
74 |
+
Classify the math solution
|
75 |
+
Returns: (classification_label, confidence_score)
|
76 |
+
"""
|
77 |
+
try:
|
78 |
+
# Combine question and solution for input
|
79 |
+
text_input = f"Question: {question}\nSolution: {solution}"
|
80 |
+
|
81 |
+
# Tokenize input
|
82 |
+
inputs = tokenizer(
|
83 |
+
text_input,
|
84 |
+
return_tensors="pt",
|
85 |
+
truncation=True,
|
86 |
+
padding=True,
|
87 |
+
max_length=512
|
88 |
+
)
|
89 |
+
|
90 |
+
# Get model prediction
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = model(**inputs)
|
93 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
94 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
95 |
+
confidence = predictions[0][predicted_class].item()
|
96 |
+
|
97 |
+
classification = label_mapping[predicted_class]
|
98 |
+
|
99 |
+
return classification, confidence
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Error during classification: {e}")
|
103 |
+
raise HTTPException(status_code=500, detail=f"Classification error: {str(e)}")
|
104 |
+
|
105 |
+
@app.on_event("startup")
|
106 |
+
async def startup_event():
|
107 |
+
"""Load model on startup"""
|
108 |
+
logger.info("Loading model...")
|
109 |
+
load_model()
|
110 |
+
|
111 |
+
@app.post("/classify", response_model=ClassificationResponse)
|
112 |
+
async def classify_math_solution(request: ClassificationRequest):
|
113 |
+
"""
|
114 |
+
Classify a math solution as correct, conceptually flawed, or computationally flawed
|
115 |
+
"""
|
116 |
+
if not model or not tokenizer:
|
117 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
118 |
+
|
119 |
+
if not request.question.strip() or not request.solution.strip():
|
120 |
+
raise HTTPException(status_code=400, detail="Both question and solution are required")
|
121 |
+
|
122 |
+
try:
|
123 |
+
classification, confidence = classify_solution(request.question, request.solution)
|
124 |
+
|
125 |
+
return ClassificationResponse(
|
126 |
+
classification=classification,
|
127 |
+
confidence=confidence
|
128 |
+
)
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Classification failed: {e}")
|
132 |
+
raise HTTPException(status_code=500, detail="Classification failed")
|
133 |
+
|
134 |
+
@app.get("/health")
|
135 |
+
async def health_check():
|
136 |
+
"""Health check endpoint"""
|
137 |
+
return {"status": "healthy", "model_loaded": model is not None}
|
138 |
+
|
139 |
+
# Serve the frontend (for Hugging Face Spaces)
|
140 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
141 |
+
|
142 |
+
@app.get("/")
|
143 |
+
async def serve_frontend():
|
144 |
+
return FileResponse("static/index.html")
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
import uvicorn
|
148 |
+
uvicorn.run(app, host="0.0.0.0", port=7860) # Port 7860 is standard for HF Spaces
|
deployment_files.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# requirements.txt
|
2 |
+
fastapi==0.104.1
|
3 |
+
uvicorn==0.24.0
|
4 |
+
torch==2.1.0
|
5 |
+
transformers==4.35.0
|
6 |
+
python-multipart==0.0.6
|
7 |
+
pydantic==2.5.0
|
8 |
+
|
9 |
+
# README.md for your Hugging Face Space
|
10 |
+
---
|
11 |
+
title: Math Solution Classifier
|
12 |
+
emoji: 🧮
|
13 |
+
colorFrom: blue
|
14 |
+
colorTo: purple
|
15 |
+
sdk: gradio
|
16 |
+
sdk_version: 4.7.1
|
17 |
+
app_file: app.py
|
18 |
+
pinned: false
|
19 |
+
---
|
20 |
+
|
21 |
+
# Math Solution Classifier
|
22 |
+
|
23 |
+
This application classifies math solutions into three categories:
|
24 |
+
- **Correct**: Solution is mathematically sound
|
25 |
+
- **Conceptually Flawed**: Wrong approach or understanding
|
26 |
+
- **Computationally Flawed**: Right approach, calculation errors
|
27 |
+
|
28 |
+
## Usage
|
29 |
+
|
30 |
+
1. Enter a math question
|
31 |
+
2. Enter the proposed solution
|
32 |
+
3. Click "Classify Solution"
|
33 |
+
4. Get instant feedback on the solution quality
|
34 |
+
|
35 |
+
Built with FastAPI and your custom trained model.
|
36 |
+
|
37 |
+
# Dockerfile (optional, for other hosting platforms)
|
38 |
+
FROM python:3.9-slim
|
39 |
+
|
40 |
+
WORKDIR /app
|
41 |
+
|
42 |
+
COPY requirements.txt .
|
43 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
44 |
+
|
45 |
+
COPY . .
|
46 |
+
|
47 |
+
EXPOSE 7860
|
48 |
+
|
49 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.104.1
|
2 |
+
uvicorn==0.24.0
|
3 |
+
torch==2.1.0
|
4 |
+
transformers==4.35.0
|
5 |
+
python-multipart==0.0.6
|
6 |
+
pydantic==2.5.0
|
static/index.html
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Math Solution Classifier</title>
|
7 |
+
<style>
|
8 |
+
* {
|
9 |
+
box-sizing: border-box;
|
10 |
+
margin: 0;
|
11 |
+
padding: 0;
|
12 |
+
}
|
13 |
+
|
14 |
+
body {
|
15 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
16 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
17 |
+
min-height: 100vh;
|
18 |
+
padding: 20px;
|
19 |
+
}
|
20 |
+
|
21 |
+
.container {
|
22 |
+
max-width: 800px;
|
23 |
+
margin: 0 auto;
|
24 |
+
background: rgba(255, 255, 255, 0.95);
|
25 |
+
border-radius: 20px;
|
26 |
+
padding: 40px;
|
27 |
+
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
|
28 |
+
backdrop-filter: blur(10px);
|
29 |
+
}
|
30 |
+
|
31 |
+
h1 {
|
32 |
+
text-align: center;
|
33 |
+
color: #333;
|
34 |
+
margin-bottom: 30px;
|
35 |
+
font-size: 2.5em;
|
36 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
37 |
+
-webkit-background-clip: text;
|
38 |
+
-webkit-text-fill-color: transparent;
|
39 |
+
background-clip: text;
|
40 |
+
}
|
41 |
+
|
42 |
+
.form-group {
|
43 |
+
margin-bottom: 25px;
|
44 |
+
}
|
45 |
+
|
46 |
+
label {
|
47 |
+
display: block;
|
48 |
+
margin-bottom: 8px;
|
49 |
+
font-weight: 600;
|
50 |
+
color: #333;
|
51 |
+
font-size: 1.1em;
|
52 |
+
}
|
53 |
+
|
54 |
+
textarea {
|
55 |
+
width: 100%;
|
56 |
+
min-height: 120px;
|
57 |
+
padding: 15px;
|
58 |
+
border: 2px solid #e1e5e9;
|
59 |
+
border-radius: 12px;
|
60 |
+
font-size: 16px;
|
61 |
+
font-family: 'Courier New', monospace;
|
62 |
+
background: #fafbfc;
|
63 |
+
transition: all 0.3s ease;
|
64 |
+
resize: vertical;
|
65 |
+
}
|
66 |
+
|
67 |
+
textarea:focus {
|
68 |
+
outline: none;
|
69 |
+
border-color: #667eea;
|
70 |
+
background: white;
|
71 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
72 |
+
}
|
73 |
+
|
74 |
+
.classify-btn {
|
75 |
+
width: 100%;
|
76 |
+
padding: 18px;
|
77 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
78 |
+
color: white;
|
79 |
+
border: none;
|
80 |
+
border-radius: 12px;
|
81 |
+
font-size: 18px;
|
82 |
+
font-weight: 600;
|
83 |
+
cursor: pointer;
|
84 |
+
transition: all 0.3s ease;
|
85 |
+
text-transform: uppercase;
|
86 |
+
letter-spacing: 1px;
|
87 |
+
}
|
88 |
+
|
89 |
+
.classify-btn:hover:not(:disabled) {
|
90 |
+
transform: translateY(-2px);
|
91 |
+
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.3);
|
92 |
+
}
|
93 |
+
|
94 |
+
.classify-btn:disabled {
|
95 |
+
background: #ccc;
|
96 |
+
cursor: not-allowed;
|
97 |
+
transform: none;
|
98 |
+
}
|
99 |
+
|
100 |
+
.result {
|
101 |
+
margin-top: 30px;
|
102 |
+
padding: 25px;
|
103 |
+
border-radius: 12px;
|
104 |
+
text-align: center;
|
105 |
+
font-size: 18px;
|
106 |
+
font-weight: 600;
|
107 |
+
opacity: 0;
|
108 |
+
transform: translateY(20px);
|
109 |
+
transition: all 0.5s ease;
|
110 |
+
}
|
111 |
+
|
112 |
+
.result.show {
|
113 |
+
opacity: 1;
|
114 |
+
transform: translateY(0);
|
115 |
+
}
|
116 |
+
|
117 |
+
.result.correct {
|
118 |
+
background: linear-gradient(135deg, #4facfe, #00f2fe);
|
119 |
+
color: white;
|
120 |
+
border: 3px solid #4facfe;
|
121 |
+
}
|
122 |
+
|
123 |
+
.result.conceptually-flawed {
|
124 |
+
background: linear-gradient(135deg, #fa709a, #fee140);
|
125 |
+
color: white;
|
126 |
+
border: 3px solid #fa709a;
|
127 |
+
}
|
128 |
+
|
129 |
+
.result.computationally-flawed {
|
130 |
+
background: linear-gradient(135deg, #ff6b6b, #ffa500);
|
131 |
+
color: white;
|
132 |
+
border: 3px solid #ff6b6b;
|
133 |
+
}
|
134 |
+
|
135 |
+
.result.error {
|
136 |
+
background: #f8f9fa;
|
137 |
+
color: #dc3545;
|
138 |
+
border: 3px solid #dc3545;
|
139 |
+
}
|
140 |
+
|
141 |
+
.loading {
|
142 |
+
display: inline-block;
|
143 |
+
width: 20px;
|
144 |
+
height: 20px;
|
145 |
+
border: 3px solid rgba(255, 255, 255, 0.3);
|
146 |
+
border-radius: 50%;
|
147 |
+
border-top-color: white;
|
148 |
+
animation: spin 1s ease-in-out infinite;
|
149 |
+
margin-right: 10px;
|
150 |
+
}
|
151 |
+
|
152 |
+
@keyframes spin {
|
153 |
+
to { transform: rotate(360deg); }
|
154 |
+
}
|
155 |
+
|
156 |
+
.example {
|
157 |
+
background: #f8f9fa;
|
158 |
+
border-left: 4px solid #667eea;
|
159 |
+
padding: 15px;
|
160 |
+
margin: 20px 0;
|
161 |
+
border-radius: 0 8px 8px 0;
|
162 |
+
}
|
163 |
+
|
164 |
+
.example h3 {
|
165 |
+
color: #667eea;
|
166 |
+
margin-bottom: 10px;
|
167 |
+
}
|
168 |
+
|
169 |
+
.example-text {
|
170 |
+
font-family: 'Courier New', monospace;
|
171 |
+
font-size: 14px;
|
172 |
+
color: #555;
|
173 |
+
}
|
174 |
+
</style>
|
175 |
+
</head>
|
176 |
+
<body>
|
177 |
+
<div class="container">
|
178 |
+
<h1>🧮 Math Solution Classifier</h1>
|
179 |
+
|
180 |
+
<div class="example">
|
181 |
+
<h3>How to use:</h3>
|
182 |
+
<p>Enter a math question and a solution attempt. The AI will classify the solution as:</p>
|
183 |
+
<ul style="margin: 10px 0 0 20px;">
|
184 |
+
<li><strong>Correct:</strong> Solution is mathematically sound</li>
|
185 |
+
<li><strong>Conceptually Flawed:</strong> Wrong approach or understanding</li>
|
186 |
+
<li><strong>Computationally Flawed:</strong> Right approach, calculation errors</li>
|
187 |
+
</ul>
|
188 |
+
</div>
|
189 |
+
|
190 |
+
<form id="classifyForm">
|
191 |
+
<div class="form-group">
|
192 |
+
<label for="question">Math Question:</label>
|
193 |
+
<textarea
|
194 |
+
id="question"
|
195 |
+
name="question"
|
196 |
+
placeholder="e.g., Solve for x: 2x + 5 = 13"
|
197 |
+
required
|
198 |
+
></textarea>
|
199 |
+
</div>
|
200 |
+
|
201 |
+
<div class="form-group">
|
202 |
+
<label for="solution">Proposed Solution:</label>
|
203 |
+
<textarea
|
204 |
+
id="solution"
|
205 |
+
name="solution"
|
206 |
+
placeholder="e.g., 2x + 5 = 13 2x = 13 - 5 2x = 8 x = 4"
|
207 |
+
required
|
208 |
+
></textarea>
|
209 |
+
</div>
|
210 |
+
|
211 |
+
<button type="submit" class="classify-btn" id="submitBtn">
|
212 |
+
Classify Solution
|
213 |
+
</button>
|
214 |
+
</form>
|
215 |
+
|
216 |
+
<div id="result" class="result"></div>
|
217 |
+
</div>
|
218 |
+
|
219 |
+
<script>
|
220 |
+
const form = document.getElementById('classifyForm');
|
221 |
+
const submitBtn = document.getElementById('submitBtn');
|
222 |
+
const resultDiv = document.getElementById('result');
|
223 |
+
|
224 |
+
// Replace this URL with your actual API endpoint
|
225 |
+
const API_URL = 'https://your-huggingface-space.hf.space/classify';
|
226 |
+
|
227 |
+
form.addEventListener('submit', async (e) => {
|
228 |
+
e.preventDefault();
|
229 |
+
|
230 |
+
const question = document.getElementById('question').value.trim();
|
231 |
+
const solution = document.getElementById('solution').value.trim();
|
232 |
+
|
233 |
+
if (!question || !solution) {
|
234 |
+
showResult('Please fill in both fields', 'error');
|
235 |
+
return;
|
236 |
+
}
|
237 |
+
|
238 |
+
// Show loading state
|
239 |
+
submitBtn.disabled = true;
|
240 |
+
submitBtn.innerHTML = '<div class="loading"></div>Classifying...';
|
241 |
+
resultDiv.className = 'result';
|
242 |
+
resultDiv.textContent = '';
|
243 |
+
|
244 |
+
try {
|
245 |
+
const response = await fetch(API_URL, {
|
246 |
+
method: 'POST',
|
247 |
+
headers: {
|
248 |
+
'Content-Type': 'application/json',
|
249 |
+
},
|
250 |
+
body: JSON.stringify({
|
251 |
+
question: question,
|
252 |
+
solution: solution
|
253 |
+
})
|
254 |
+
});
|
255 |
+
|
256 |
+
if (!response.ok) {
|
257 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
258 |
+
}
|
259 |
+
|
260 |
+
const data = await response.json();
|
261 |
+
|
262 |
+
// Display result
|
263 |
+
showResult(formatResult(data.classification), data.classification);
|
264 |
+
|
265 |
+
} catch (error) {
|
266 |
+
console.error('Error:', error);
|
267 |
+
showResult('Error connecting to the classification service. Please try again.', 'error');
|
268 |
+
} finally {
|
269 |
+
// Reset button
|
270 |
+
submitBtn.disabled = false;
|
271 |
+
submitBtn.innerHTML = 'Classify Solution';
|
272 |
+
}
|
273 |
+
});
|
274 |
+
|
275 |
+
function formatResult(classification) {
|
276 |
+
const messages = {
|
277 |
+
'correct': '✅ Correct Solution!\nThe mathematical approach and calculations are both sound.',
|
278 |
+
'conceptually-flawed': '🤔 Conceptually Flawed\nThe approach or understanding has fundamental issues.',
|
279 |
+
'computationally-flawed': '🔢 Computationally Flawed\nThe approach is correct, but there are calculation errors.'
|
280 |
+
};
|
281 |
+
|
282 |
+
return messages[classification] || `Classification: ${classification}`;
|
283 |
+
}
|
284 |
+
|
285 |
+
function showResult(message, type) {
|
286 |
+
resultDiv.textContent = message;
|
287 |
+
resultDiv.className = `result ${type} show`;
|
288 |
+
}
|
289 |
+
|
290 |
+
// For demo purposes - remove this when you have a real API
|
291 |
+
if (API_URL.includes('your-huggingface-space')) {
|
292 |
+
// Mock API for testing
|
293 |
+
form.addEventListener('submit', async (e) => {
|
294 |
+
e.preventDefault();
|
295 |
+
|
296 |
+
submitBtn.disabled = true;
|
297 |
+
submitBtn.innerHTML = '<div class="loading"></div>Classifying...';
|
298 |
+
|
299 |
+
// Simulate API delay
|
300 |
+
await new Promise(resolve => setTimeout(resolve, 2000));
|
301 |
+
|
302 |
+
// Mock classification (randomly choose one for demo)
|
303 |
+
const classifications = ['correct', 'conceptually-flawed', 'computationally-flawed'];
|
304 |
+
const randomClassification = classifications[Math.floor(Math.random() * classifications.length)];
|
305 |
+
|
306 |
+
showResult(formatResult(randomClassification), randomClassification);
|
307 |
+
|
308 |
+
submitBtn.disabled = false;
|
309 |
+
submitBtn.innerHTML = 'Classify Solution';
|
310 |
+
});
|
311 |
+
}
|
312 |
+
</script>
|
313 |
+
</body>
|
314 |
+
</html>
|