File size: 27,436 Bytes
7f9c492
 
65411d8
5e04242
7f9c492
 
65411d8
7f9c492
65411d8
b257e4f
7f9c492
b257e4f
 
 
 
7f9c492
68ea82c
 
7f9c492
 
68ea82c
7f9c492
 
68ea82c
 
7f9c492
 
 
 
 
 
f468cfb
 
 
65411d8
 
 
 
 
 
68ea82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
078793a
 
 
 
 
 
 
 
 
 
 
 
7f9c492
078793a
 
b257e4f
078793a
 
 
7f9c492
078793a
 
7f9c492
078793a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9c492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e04242
7f9c492
 
 
 
 
 
 
b257e4f
f468cfb
 
7f9c492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f468cfb
7f9c492
 
 
 
 
 
 
078793a
 
65411d8
68ea82c
65411d8
 
 
 
 
 
 
 
 
68ea82c
65411d8
 
 
 
 
 
 
 
 
 
 
 
7f9c492
65411d8
 
 
68ea82c
65411d8
 
 
 
 
 
 
 
 
 
68ea82c
65411d8
 
 
 
 
 
 
 
 
 
 
 
 
7f9c492
65411d8
68ea82c
 
65411d8
 
 
ebd9a25
65411d8
 
 
 
 
68ea82c
65411d8
 
68ea82c
 
5e04242
 
 
 
65411d8
 
68ea82c
 
 
 
b257e4f
f468cfb
 
68ea82c
 
 
 
 
 
 
 
 
b257e4f
68ea82c
 
 
b257e4f
68ea82c
b257e4f
68ea82c
b257e4f
 
68ea82c
 
 
 
7f9c492
68ea82c
 
b257e4f
7f9c492
68ea82c
 
 
 
 
 
 
 
 
b257e4f
68ea82c
 
b257e4f
68ea82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b257e4f
68ea82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9c492
 
 
68ea82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9c492
68ea82c
 
 
 
 
078793a
 
 
 
 
68ea82c
 
 
 
 
5e04242
 
 
 
68ea82c
 
 
 
 
 
b257e4f
f468cfb
 
68ea82c
 
 
 
 
 
 
 
 
b257e4f
68ea82c
 
 
b257e4f
68ea82c
b257e4f
68ea82c
 
b257e4f
68ea82c
 
 
 
 
 
 
 
b257e4f
68ea82c
 
b257e4f
68ea82c
 
 
 
 
 
 
b257e4f
68ea82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b257e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e04242
 
 
 
b257e4f
 
 
 
 
 
f468cfb
 
 
b257e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65411d8
 
 
 
 
68ea82c
65411d8
0ee1a64
b257e4f
68ea82c
65411d8
 
515dbe1
 
078793a
515dbe1
7f9c492
515dbe1
68ea82c
515dbe1
68ea82c
515dbe1
b257e4f
65411d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
from pathlib import Path

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import requests
import SimpleITK as sitk  # noqa: N813
import spaces
import torch
from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
from cinema.examples.cine_cmr import plot_cmr_views
from cinema.examples.inference.landmark_heatmap import (
    plot_landmarks,
    plot_lv,
)
from cinema.examples.inference.mae import plot_mae_reconstruction, reconstruct_images
from cinema.examples.inference.segmentation_lax_4c import (
    plot_segmentations as plot_segmentations_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
    plot_volume_changes as plot_volume_changes_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
    post_process as post_process_lax_segmentation,
)
from cinema.examples.inference.segmentation_sax import (
    plot_segmentations as plot_segmentations_sax,
)
from cinema.examples.inference.segmentation_sax import (
    plot_volume_changes as plot_volume_changes_sax,
)
from huggingface_hub import hf_hub_download
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from tqdm import tqdm

# cache directories
cache_dir = Path("/tmp/.cinema")
cache_dir.mkdir(parents=True, exist_ok=True)


# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
    device = torch.device("cuda")
    if torch.cuda.is_bf16_supported():
        dtype = torch.bfloat16


# Create the Gradio interface
theme = gr.themes.Ocean(
    primary_hue="red",
    secondary_hue="purple",
)


def load_nifti_from_github(name: str) -> sitk.Image:
    path = cache_dir / name
    if not path.exists():
        image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/{name}"
        response = requests.get(image_url)
        path.parent.mkdir(parents=True, exist_ok=True)
        with open(path, "wb") as f:
            f.write(response.content)
    return sitk.ReadImage(path)


def cmr_tab():
    with gr.Blocks() as cmr_interface:
        gr.Markdown(
            """
            This page illustrates the spatial orientation of short-axis (SAX) and long-axis (LAX) views in 3D.
            """
        )
        with gr.Row():
            with gr.Column(scale=5):
                gr.Markdown("## Views")
                cmr_plot = gr.Plot(show_label=False)
            with gr.Column(scale=3):
                gr.Markdown("## Data Settings")
                image_id = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    label="Choose an image, ID is between 1 and 4",
                    value=1,
                )
                # Placeholder for slice slider, will update dynamically
                slice_idx = gr.Slider(
                    minimum=0,
                    maximum=8,
                    step=1,
                    label="SAX slice to visualize",
                    value=0,
                )

        def get_num_slices(image_id):
            sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
            return sax_image.GetSize()[2]

        def update_slice_slider(image_id):
            num_slices = get_num_slices(image_id)
            return gr.update(maximum=num_slices - 1, value=0, visible=True)

        def fn(image_id, slice_idx):
            lax_2c_image = load_nifti_from_github(
                f"ukb/{image_id}/{image_id}_lax_2c.nii.gz"
            )
            lax_3c_image = load_nifti_from_github(
                f"ukb/{image_id}/{image_id}_lax_3c.nii.gz"
            )
            lax_4c_image = load_nifti_from_github(
                f"ukb/{image_id}/{image_id}_lax_4c.nii.gz"
            )
            sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
            fig = plot_cmr_views(
                lax_2c_image,
                lax_3c_image,
                lax_4c_image,
                sax_image,
                t_to_show=4,
                depth_to_show=slice_idx,
            )
            fig.update_layout(height=600)
            return fig

        # When image changes, update the slice slider and plot
        gr.on(
            fn=lambda image_id: [update_slice_slider(image_id), fn(image_id, 0)],
            inputs=[image_id],
            outputs=[slice_idx, cmr_plot],
        )

        # When slice changes, update the plot
        slice_idx.change(
            fn=fn,
            inputs=[image_id, slice_idx],
            outputs=[cmr_plot],
        )

    return cmr_interface


@spaces.GPU
def mae_inference(
    batch: dict[str, torch.Tensor],
    transform: Compose,
    model: CineMA,
    mask_ratio: float,
) -> tuple[dict[str, np.ndarray], dict[str, np.ndarray], dict[str, np.ndarray]]:
    model.to(device)
    sax_slices = batch["sax"].shape[-1]
    batch = transform(batch)
    batch = {k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()}
    with (
        torch.no_grad(),
        torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
    ):
        _, pred_dict, enc_mask_dict, _ = model(batch, enc_mask_ratio=mask_ratio)
        grid_size_dict = {
            k: v.patch_embed.grid_size for k, v in model.enc_down_dict.items()
        }
        reconstructed_dict, masks_dict = reconstruct_images(
            batch,
            pred_dict,
            enc_mask_dict,
            model.dec_patch_size_dict,
            grid_size_dict,
            sax_slices,
        )
        batch = {
            k: v.detach().to(torch.float32).cpu().numpy()[0, 0]
            for k, v in batch.items()
        }
        batch["sax"] = batch["sax"][..., :sax_slices]
        return batch, reconstructed_dict, masks_dict


def mae(image_id, mask_ratio, progress=gr.Progress()):
    t = 4  # which time frame to use
    progress(0, desc="Downloading model...")
    model = CineMA.from_pretrained()
    model.eval()

    progress(0, desc="Downloading data...")
    lax_2c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_2c.nii.gz")
    lax_3c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_3c.nii.gz")
    lax_4c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_4c.nii.gz")
    sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
    transform = Compose(
        [
            ScaleIntensityd(keys=("sax", "lax_2c", "lax_3c", "lax_4c")),
            SpatialPadd(keys="sax", spatial_size=(192, 192, 16), method="end"),
            SpatialPadd(
                keys=("lax_2c", "lax_3c", "lax_4c"),
                spatial_size=(256, 256),
                method="end",
            ),
        ]
    )
    lax_2c_image_np = np.transpose(sitk.GetArrayFromImage(lax_2c_image))
    lax_3c_image_np = np.transpose(sitk.GetArrayFromImage(lax_3c_image))
    lax_4c_image_np = np.transpose(sitk.GetArrayFromImage(lax_4c_image))
    sax_image_np = np.transpose(sitk.GetArrayFromImage(sax_image))
    image_dict = {
        "sax": sax_image_np[None, ..., t],
        "lax_2c": lax_2c_image_np[None, ..., 0, t],
        "lax_3c": lax_3c_image_np[None, ..., 0, t],
        "lax_4c": lax_4c_image_np[None, ..., 0, t],
    }
    batch = {k: torch.from_numpy(v) for k, v in image_dict.items()}

    progress(0.5, desc="Running inference...")
    batch, reconstructed_dict, masks_dict = mae_inference(
        batch, transform, model, mask_ratio
    )
    progress(1, desc="Plotting results...")

    fig = plot_mae_reconstruction(
        batch,
        reconstructed_dict,
        masks_dict,
    )
    plt.close(fig)
    return fig


def mae_tab():
    with gr.Blocks() as mae_interface:
        gr.Markdown(
            """
            This page demonstrates the masking and reconstruction process of the masked autoencoder. The model was trained with a mask ratio of 0.75 over 74,000 studies.

            Visualisation may take a few seconds as we download the model weights, process the data, and render the plots.
            """
        )
        with gr.Row():
            with gr.Column(scale=5):
                gr.Markdown("## Reconstruction")
                plot = gr.Plot(show_label=False)
            with gr.Column(scale=3):
                gr.Markdown("## Data Settings")
                image_id = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    label="Choose an image, ID is between 1 and 4",
                    value=1,
                )
                mask_ratio = gr.Slider(
                    minimum=0.05,
                    maximum=1,
                    step=0.05,
                    label="Mask ratio",
                    value=0.75,
                )
                run_button = gr.Button("Run masked autoencoder", variant="primary")
        run_button.click(
            fn=mae,
            inputs=[image_id, mask_ratio],
            outputs=[plot],
        )

    return mae_interface


@spaces.GPU
def segmentation_sax_inference(
    images: torch.Tensor,
    view: str,
    transform: Compose,
    model: ConvUNetR,
    progress=gr.Progress(),
) -> np.ndarray:
    model.to(device)
    n_slices, n_frames = images.shape[-2:]
    labels_list = []
    for t in tqdm(range(0, n_frames), total=n_frames):
        progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
        batch = transform({view: torch.from_numpy(images[None, ..., t])})
        batch = {
            k: v[None, ...].to(device=device, dtype=torch.float32)
            for k, v in batch.items()
        }
        with (
            torch.no_grad(),
            torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
        ):
            logits = model(batch)[view]
        labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
    labels = torch.stack(labels_list, dim=-1).detach().to(torch.float32).cpu().numpy()
    return labels


def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
    # Fixed parameters
    view = "sax"
    split = "train" if image_id <= 100 else "test"
    trained_dataset = {
        "ACDC": "acdc",
        "M&MS": "mnms",
        "M&MS2": "mnms2",
    }[str(trained_dataset)]

    # Download and load model
    progress(0, desc="Downloading model...")
    image_path = hf_hub_download(
        repo_id="mathpluscode/ACDC",
        repo_type="dataset",
        filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
        cache_dir=cache_dir,
    )

    model = ConvUNetR.from_finetuned(
        repo_id="mathpluscode/CineMA",
        model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
        config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
        cache_dir=cache_dir,
    )
    model.eval()

    # Inference
    progress(0, desc="Downloading data...")
    transform = Compose(
        [
            ScaleIntensityd(keys=view),
            SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
        ]
    )

    images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
    images = images[..., ::t_step]
    labels = segmentation_sax_inference(images, view, transform, model, progress)

    progress(1, desc="Plotting results...")
    fig1 = plot_segmentations_sax(images, labels, t_step)
    fig2 = plot_volume_changes_sax(labels, t_step)
    result = (fig1, fig2)
    plt.close(fig1)
    plt.close(fig2)
    return result


def segmentation_sax_tab():
    with gr.Blocks() as sax_interface:
        gr.Markdown(
            """
            This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view.

            Visualisation may take dozens of seconds to update as we download model checkpoints, process multiple time frames sequentially, and generate the final plots.
            """
        )

        with gr.Row():
            with gr.Column(scale=4):
                gr.Markdown("""
                ## Description
                ### Data

                Images 101–150 are from the test set of [ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/).

                ### Model

                The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are three models finetuned with seeds: 0, 1, 2.

                ### Visualisation

                The left figure shows the segmentation of ventricles and myocardium at every n time step across all SAX slices.
                The right figure shows the volumes across all time frames and estimates the ejection fraction (EF) for the left ventricle (LV) and right ventricle (RV).
                """)
            with gr.Column(scale=3):
                gr.Markdown("## Data Settings")
                image_id = gr.Slider(
                    minimum=101,
                    maximum=150,
                    step=1,
                    label="Choose an image, ID is between 101 and 150",
                    value=101,
                )
                t_step = gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    label="Choose the gap between time frames",
                    value=2,
                )
            with gr.Column(scale=3):
                gr.Markdown("## Model Settings")
                trained_dataset = gr.Dropdown(
                    choices=["ACDC", "M&MS", "M&MS2"],
                    label="Choose which dataset the model was finetuned on",
                    value="ACDC",
                )
                seed = gr.Slider(
                    minimum=0,
                    maximum=2,
                    step=1,
                    label="Choose which seed the finetuning used",
                    value=0,
                )
        run_button = gr.Button("Run SAX segmentation inference", variant="primary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Ventricle and Myocardium Segmentation")
                segmentation_plot = gr.Plot(show_label=False)
            with gr.Column():
                gr.Markdown("## Volume Estimation")
                volume_plot = gr.Plot(show_label=False)

        run_button.click(
            fn=segmentation_sax,
            inputs=[trained_dataset, seed, image_id, t_step],
            outputs=[segmentation_plot, volume_plot],
        )
    return sax_interface


@spaces.GPU
def segmentation_lax_inference(
    images: torch.Tensor,
    view: str,
    transform: Compose,
    model: ConvUNetR,
    progress=gr.Progress(),
) -> np.ndarray:
    model.to(device)
    n_frames = images.shape[-1]
    labels_list = []
    for t in tqdm(range(n_frames), total=n_frames):
        progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
        batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
        batch = {
            k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
        }
        with (
            torch.no_grad(),
            torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
        ):
            logits = model(batch)[view]  # (1, 4, x, y)
        labels = (
            torch.argmax(logits, dim=1)[0].detach().to(torch.float32).cpu().numpy()
        )  # (x, y)

        # the model seems to hallucinate an additional right ventricle and myocardium sometimes
        # find the connected component that is closest to left ventricle
        labels = post_process_lax_segmentation(labels)
        labels_list.append(labels)
    labels = np.stack(labels_list, axis=-1)  # (x, y, t)
    return labels


def segmentation_lax(seed, image_id, progress=gr.Progress()):
    # Fixed parameters
    trained_dataset = "mnms2"
    view = "lax_4c"

    # Download and load model
    progress(0, desc="Downloading model...")
    model = ConvUNetR.from_finetuned(
        repo_id="mathpluscode/CineMA",
        model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
        config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
        cache_dir=cache_dir,
    )
    model.eval()

    # Inference
    progress(0, desc="Downloading data...")
    transform = ScaleIntensityd(keys=view)

    images = np.transpose(
        sitk.GetArrayFromImage(
            load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
        )
    )
    labels = segmentation_lax_inference(images, view, transform, model, progress)

    progress(1, desc="Plotting results...")
    fig1 = plot_segmentations_lax(images, labels)
    fig2 = plot_volume_changes_lax(labels)
    result = (fig1, fig2)
    plt.close(fig1)
    plt.close(fig2)
    return result


def segmentation_lax_tab():
    with gr.Blocks() as lax_interface:
        gr.Markdown(
            """
            This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view.

            Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
            """
        )

        with gr.Row():
            with gr.Column(scale=4):
                gr.Markdown("""
                ## Description
                ### Data

                There are four example images from the UK Biobank.

                ### Model

                The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). There are three models finetuned with seeds: 0, 1, 2.

                ### Visualisation

                The left figure shows the segmentation of ventricles and myocardium across all time frames.
                The right figure shows the volumes across all time frames and estimates the ejection fraction (EF).
                """)
            with gr.Column(scale=3):
                gr.Markdown("## Data Settings")
                image_id = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    label="Choose an image, ID is between 1 and 4",
                    value=1,
                )
            with gr.Column(scale=3):
                gr.Markdown("## Model Settings")
                seed = gr.Slider(
                    minimum=0,
                    maximum=2,
                    step=1,
                    label="Choose which seed the finetuning used",
                    value=0,
                )
        run_button = gr.Button("Run LAX 4C segmentation inference", variant="primary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Ventricle and Myocardium Segmentation")
                segmentation_plot = gr.Plot(show_label=False)
            with gr.Column():
                gr.Markdown("## Ejection Fraction Prediction")
                volume_plot = gr.Plot(show_label=False)

        run_button.click(
            fn=segmentation_lax,
            inputs=[seed, image_id],
            outputs=[segmentation_plot, volume_plot],
        )
    return lax_interface


@spaces.GPU
def landmark_heatmap_inference(
    images: torch.Tensor,
    view: str,
    transform: Compose,
    model: ConvUNetR,
    progress=gr.Progress(),
) -> tuple[np.ndarray, np.ndarray]:
    model.to(device)

    n_frames = images.shape[-1]
    probs_list = []
    coords_list = []
    for t in tqdm(range(n_frames), total=n_frames):
        progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
        batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
        batch = {
            k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
        }
        with (
            torch.no_grad(),
            torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
        ):
            logits = model(batch)[view]  # (1, 3, x, y)
        probs = torch.sigmoid(logits)  # (1, 3, width, height)
        probs_list.append(probs[0].detach().to(torch.float32).cpu().numpy())
        coords = heatmap_soft_argmax(probs)[0].detach().to(torch.float32).cpu().numpy()
        coords = [int(x) for x in coords]
        coords_list.append(coords)
    probs = np.stack(probs_list, axis=-1)  # (3, x, y, t)
    coords = np.stack(coords_list, axis=-1)  # (6, t)
    return probs, coords


@spaces.GPU
def landmark_coordinate_inference(
    images: torch.Tensor,
    view: str,
    transform: Compose,
    model: ConvViT,
    progress=gr.Progress(),
) -> np.ndarray:
    model.to(device)

    w, h, _, n_frames = images.shape
    coords_list = []
    for t in tqdm(range(n_frames), total=n_frames):
        progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
        batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
        batch = {
            k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
        }
        with (
            torch.no_grad(),
            torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
        ):
            coords = model(batch)[0].detach().to(torch.float32).cpu().numpy()  # (6,)
        coords *= np.array([w, h, w, h, w, h])
        coords = [int(x) for x in coords]
        coords_list.append(coords)
    coords = np.stack(coords_list, axis=-1)  # (6, t)
    return coords


def landmark(image_id, view, method, seed, progress=gr.Progress()):
    view = "lax_2c" if view == "LAX 2C" else "lax_4c"
    method = method.lower()

    # Download and load model
    progress(0, desc="Downloading model...")
    if method == "heatmap":
        model = ConvUNetR.from_finetuned(
            repo_id="mathpluscode/CineMA",
            model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
            config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
            cache_dir=cache_dir,
        )
    elif method == "coordinate":
        model = ConvViT.from_finetuned(
            repo_id="mathpluscode/CineMA",
            model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
            config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
            cache_dir=cache_dir,
        )
    else:
        raise ValueError(f"Invalid method: {method}")
    model.eval()

    # Inference
    progress(0, desc="Downloading data...")
    transform = ScaleIntensityd(keys=view)
    images = np.transpose(
        sitk.GetArrayFromImage(
            load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
        )
    )

    if method == "heatmap":
        _, coords = landmark_heatmap_inference(images, view, transform, model, progress)
    elif method == "coordinate":
        coords = landmark_coordinate_inference(images, view, transform, model, progress)
    else:
        raise ValueError(f"Invalid method: {method}")

    landmark_fig = plot_landmarks(images, coords)
    lv_fig = plot_lv(coords)
    result = (landmark_fig, lv_fig)
    plt.close(landmark_fig)
    plt.close(lv_fig)
    return result


def landmark_tab():
    with gr.Blocks() as landmark_interface:
        gr.Markdown(
            """
            This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views.

            Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
            """
        )

        with gr.Row():
            with gr.Column(scale=4):
                gr.Markdown("""
                ## Description
                ### Data

                There are four example images from the UK Biobank.

                ### Model

                The available models are finetuned on data from [Xue et al.](https://pubs.rsna.org/doi/10.1148/ryai.2021200197).
                There are two types of landmark localisation models:

                - **Heatmap**: predicts dense probability maps of landmarks
                - **Coordinate**: predicts landmark coordinates directly

                For each type, there are three models finetuned with seeds: 0, 1, 2.

                ### Visualisation

                The left figure shows the landmark positions across all time frames.
                The right figure shows the length of the left ventricle across all time frames and the estimates of two metrics:
                - Mitral annular plane systolic excursion (MAPSE)
                - Global longitudinal shortening (GLS)
                """)
            with gr.Column(scale=3):
                gr.Markdown("## Data Settings")
                image_id = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    label="Choose an image, ID is between 1 and 4",
                    value=1,
                )
                view = gr.Dropdown(
                    choices=["LAX 2C", "LAX 4C"],
                    label="Choose which view to localise the landmarks",
                    value="LAX 2C",
                )
            with gr.Column(scale=3):
                gr.Markdown("## Model Settings")
                method = gr.Dropdown(
                    choices=["Heatmap", "Coordinate"],
                    label="Choose which method to use",
                    value="Heatmap",
                )
                seed = gr.Slider(
                    minimum=0,
                    maximum=2,
                    step=1,
                    label="Choose which seed the finetuning used",
                    value=0,
                )
        run_button = gr.Button("Run landmark localisation inference", variant="primary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Landmark Localisation")
                landmark_plot = gr.Plot(show_label=False)
            with gr.Column():
                gr.Markdown("## Left Ventricle Length Estimation")
                lv_plot = gr.Plot(show_label=False)

        run_button.click(
            fn=landmark,
            inputs=[image_id, view, method, seed],
            outputs=[landmark_plot, lv_plot],
        )
    return landmark_interface


with gr.Blocks(
    theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
    gr.Markdown(
        """
        # CineMA: A Foundation Model for Cine Cardiac MRI πŸŽ₯πŸ«€

        The following demos showcase the capabilities of CineMA in multiple tasks.
        For more details, check out our [GitHub](https://github.com/mathpluscode/CineMA).
        """
    )

    with gr.Tabs(selected="lax_seg") as tabs:
        with gr.TabItem("πŸ–ΌοΈ Cine CMR Views", id="cmr"):
            cmr_tab()
        with gr.TabItem("🧩 Masked Autoencoder", id="mae"):
            mae_tab()
        with gr.TabItem("βœ‚οΈ Segmentation in SAX View", id="sax_seg"):
            segmentation_sax_tab()
        with gr.TabItem("βœ‚οΈ Segmentation in LAX 4C View", id="lax_seg"):
            segmentation_lax_tab()
        with gr.TabItem("πŸ“ Landmark Localisation in LAX 2C/4C View", id="landmark"):
            landmark_tab()
demo.launch()