Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,436 Bytes
7f9c492 65411d8 5e04242 7f9c492 65411d8 7f9c492 65411d8 b257e4f 7f9c492 b257e4f 7f9c492 68ea82c 7f9c492 68ea82c 7f9c492 68ea82c 7f9c492 f468cfb 65411d8 68ea82c 078793a 7f9c492 078793a b257e4f 078793a 7f9c492 078793a 7f9c492 078793a 7f9c492 5e04242 7f9c492 b257e4f f468cfb 7f9c492 f468cfb 7f9c492 078793a 65411d8 68ea82c 65411d8 68ea82c 65411d8 7f9c492 65411d8 68ea82c 65411d8 68ea82c 65411d8 7f9c492 65411d8 68ea82c 65411d8 ebd9a25 65411d8 68ea82c 65411d8 68ea82c 5e04242 65411d8 68ea82c b257e4f f468cfb 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c 7f9c492 68ea82c b257e4f 7f9c492 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c 7f9c492 68ea82c 7f9c492 68ea82c 078793a 68ea82c 5e04242 68ea82c b257e4f f468cfb 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 68ea82c b257e4f 5e04242 b257e4f f468cfb b257e4f 65411d8 68ea82c 65411d8 0ee1a64 b257e4f 68ea82c 65411d8 515dbe1 078793a 515dbe1 7f9c492 515dbe1 68ea82c 515dbe1 68ea82c 515dbe1 b257e4f 65411d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import requests
import SimpleITK as sitk # noqa: N813
import spaces
import torch
from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
from cinema.examples.cine_cmr import plot_cmr_views
from cinema.examples.inference.landmark_heatmap import (
plot_landmarks,
plot_lv,
)
from cinema.examples.inference.mae import plot_mae_reconstruction, reconstruct_images
from cinema.examples.inference.segmentation_lax_4c import (
plot_segmentations as plot_segmentations_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
plot_volume_changes as plot_volume_changes_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
post_process as post_process_lax_segmentation,
)
from cinema.examples.inference.segmentation_sax import (
plot_segmentations as plot_segmentations_sax,
)
from cinema.examples.inference.segmentation_sax import (
plot_volume_changes as plot_volume_changes_sax,
)
from huggingface_hub import hf_hub_download
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from tqdm import tqdm
# cache directories
cache_dir = Path("/tmp/.cinema")
cache_dir.mkdir(parents=True, exist_ok=True)
# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
# Create the Gradio interface
theme = gr.themes.Ocean(
primary_hue="red",
secondary_hue="purple",
)
def load_nifti_from_github(name: str) -> sitk.Image:
path = cache_dir / name
if not path.exists():
image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/{name}"
response = requests.get(image_url)
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as f:
f.write(response.content)
return sitk.ReadImage(path)
def cmr_tab():
with gr.Blocks() as cmr_interface:
gr.Markdown(
"""
This page illustrates the spatial orientation of short-axis (SAX) and long-axis (LAX) views in 3D.
"""
)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Views")
cmr_plot = gr.Plot(show_label=False)
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
# Placeholder for slice slider, will update dynamically
slice_idx = gr.Slider(
minimum=0,
maximum=8,
step=1,
label="SAX slice to visualize",
value=0,
)
def get_num_slices(image_id):
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
return sax_image.GetSize()[2]
def update_slice_slider(image_id):
num_slices = get_num_slices(image_id)
return gr.update(maximum=num_slices - 1, value=0, visible=True)
def fn(image_id, slice_idx):
lax_2c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_2c.nii.gz"
)
lax_3c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_3c.nii.gz"
)
lax_4c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_4c.nii.gz"
)
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
fig = plot_cmr_views(
lax_2c_image,
lax_3c_image,
lax_4c_image,
sax_image,
t_to_show=4,
depth_to_show=slice_idx,
)
fig.update_layout(height=600)
return fig
# When image changes, update the slice slider and plot
gr.on(
fn=lambda image_id: [update_slice_slider(image_id), fn(image_id, 0)],
inputs=[image_id],
outputs=[slice_idx, cmr_plot],
)
# When slice changes, update the plot
slice_idx.change(
fn=fn,
inputs=[image_id, slice_idx],
outputs=[cmr_plot],
)
return cmr_interface
@spaces.GPU
def mae_inference(
batch: dict[str, torch.Tensor],
transform: Compose,
model: CineMA,
mask_ratio: float,
) -> tuple[dict[str, np.ndarray], dict[str, np.ndarray], dict[str, np.ndarray]]:
model.to(device)
sax_slices = batch["sax"].shape[-1]
batch = transform(batch)
batch = {k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
_, pred_dict, enc_mask_dict, _ = model(batch, enc_mask_ratio=mask_ratio)
grid_size_dict = {
k: v.patch_embed.grid_size for k, v in model.enc_down_dict.items()
}
reconstructed_dict, masks_dict = reconstruct_images(
batch,
pred_dict,
enc_mask_dict,
model.dec_patch_size_dict,
grid_size_dict,
sax_slices,
)
batch = {
k: v.detach().to(torch.float32).cpu().numpy()[0, 0]
for k, v in batch.items()
}
batch["sax"] = batch["sax"][..., :sax_slices]
return batch, reconstructed_dict, masks_dict
def mae(image_id, mask_ratio, progress=gr.Progress()):
t = 4 # which time frame to use
progress(0, desc="Downloading model...")
model = CineMA.from_pretrained()
model.eval()
progress(0, desc="Downloading data...")
lax_2c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_2c.nii.gz")
lax_3c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_3c.nii.gz")
lax_4c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_4c.nii.gz")
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
transform = Compose(
[
ScaleIntensityd(keys=("sax", "lax_2c", "lax_3c", "lax_4c")),
SpatialPadd(keys="sax", spatial_size=(192, 192, 16), method="end"),
SpatialPadd(
keys=("lax_2c", "lax_3c", "lax_4c"),
spatial_size=(256, 256),
method="end",
),
]
)
lax_2c_image_np = np.transpose(sitk.GetArrayFromImage(lax_2c_image))
lax_3c_image_np = np.transpose(sitk.GetArrayFromImage(lax_3c_image))
lax_4c_image_np = np.transpose(sitk.GetArrayFromImage(lax_4c_image))
sax_image_np = np.transpose(sitk.GetArrayFromImage(sax_image))
image_dict = {
"sax": sax_image_np[None, ..., t],
"lax_2c": lax_2c_image_np[None, ..., 0, t],
"lax_3c": lax_3c_image_np[None, ..., 0, t],
"lax_4c": lax_4c_image_np[None, ..., 0, t],
}
batch = {k: torch.from_numpy(v) for k, v in image_dict.items()}
progress(0.5, desc="Running inference...")
batch, reconstructed_dict, masks_dict = mae_inference(
batch, transform, model, mask_ratio
)
progress(1, desc="Plotting results...")
fig = plot_mae_reconstruction(
batch,
reconstructed_dict,
masks_dict,
)
plt.close(fig)
return fig
def mae_tab():
with gr.Blocks() as mae_interface:
gr.Markdown(
"""
This page demonstrates the masking and reconstruction process of the masked autoencoder. The model was trained with a mask ratio of 0.75 over 74,000 studies.
Visualisation may take a few seconds as we download the model weights, process the data, and render the plots.
"""
)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Reconstruction")
plot = gr.Plot(show_label=False)
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
mask_ratio = gr.Slider(
minimum=0.05,
maximum=1,
step=0.05,
label="Mask ratio",
value=0.75,
)
run_button = gr.Button("Run masked autoencoder", variant="primary")
run_button.click(
fn=mae,
inputs=[image_id, mask_ratio],
outputs=[plot],
)
return mae_interface
@spaces.GPU
def segmentation_sax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_slices, n_frames = images.shape[-2:]
labels_list = []
for t in tqdm(range(0, n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., t])})
batch = {
k: v[None, ...].to(device=device, dtype=torch.float32)
for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view]
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
labels = torch.stack(labels_list, dim=-1).detach().to(torch.float32).cpu().numpy()
return labels
def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
# Fixed parameters
view = "sax"
split = "train" if image_id <= 100 else "test"
trained_dataset = {
"ACDC": "acdc",
"M&MS": "mnms",
"M&MS2": "mnms2",
}[str(trained_dataset)]
# Download and load model
progress(0, desc="Downloading model...")
image_path = hf_hub_download(
repo_id="mathpluscode/ACDC",
repo_type="dataset",
filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
cache_dir=cache_dir,
)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = Compose(
[
ScaleIntensityd(keys=view),
SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
]
)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
images = images[..., ::t_step]
labels = segmentation_sax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_sax(images, labels, t_step)
fig2 = plot_volume_changes_sax(labels, t_step)
result = (fig1, fig2)
plt.close(fig1)
plt.close(fig2)
return result
def segmentation_sax_tab():
with gr.Blocks() as sax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view.
Visualisation may take dozens of seconds to update as we download model checkpoints, process multiple time frames sequentially, and generate the final plots.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
Images 101β150 are from the test set of [ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/).
### Model
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are three models finetuned with seeds: 0, 1, 2.
### Visualisation
The left figure shows the segmentation of ventricles and myocardium at every n time step across all SAX slices.
The right figure shows the volumes across all time frames and estimates the ejection fraction (EF) for the left ventricle (LV) and right ventricle (RV).
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=101,
maximum=150,
step=1,
label="Choose an image, ID is between 101 and 150",
value=101,
)
t_step = gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Choose the gap between time frames",
value=2,
)
with gr.Column(scale=3):
gr.Markdown("## Model Settings")
trained_dataset = gr.Dropdown(
choices=["ACDC", "M&MS", "M&MS2"],
label="Choose which dataset the model was finetuned on",
value="ACDC",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run SAX segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Volume Estimation")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_sax,
inputs=[trained_dataset, seed, image_id, t_step],
outputs=[segmentation_plot, volume_plot],
)
return sax_interface
@spaces.GPU
def segmentation_lax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_frames = images.shape[-1]
labels_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 4, x, y)
labels = (
torch.argmax(logits, dim=1)[0].detach().to(torch.float32).cpu().numpy()
) # (x, y)
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
# find the connected component that is closest to left ventricle
labels = post_process_lax_segmentation(labels)
labels_list.append(labels)
labels = np.stack(labels_list, axis=-1) # (x, y, t)
return labels
def segmentation_lax(seed, image_id, progress=gr.Progress()):
# Fixed parameters
trained_dataset = "mnms2"
view = "lax_4c"
# Download and load model
progress(0, desc="Downloading model...")
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(
sitk.GetArrayFromImage(
load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
)
)
labels = segmentation_lax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_lax(images, labels)
fig2 = plot_volume_changes_lax(labels)
result = (fig1, fig2)
plt.close(fig1)
plt.close(fig2)
return result
def segmentation_lax_tab():
with gr.Blocks() as lax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view.
Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example images from the UK Biobank.
### Model
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). There are three models finetuned with seeds: 0, 1, 2.
### Visualisation
The left figure shows the segmentation of ventricles and myocardium across all time frames.
The right figure shows the volumes across all time frames and estimates the ejection fraction (EF).
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
with gr.Column(scale=3):
gr.Markdown("## Model Settings")
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run LAX 4C segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Ejection Fraction Prediction")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_lax,
inputs=[seed, image_id],
outputs=[segmentation_plot, volume_plot],
)
return lax_interface
@spaces.GPU
def landmark_heatmap_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> tuple[np.ndarray, np.ndarray]:
model.to(device)
n_frames = images.shape[-1]
probs_list = []
coords_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 3, x, y)
probs = torch.sigmoid(logits) # (1, 3, width, height)
probs_list.append(probs[0].detach().to(torch.float32).cpu().numpy())
coords = heatmap_soft_argmax(probs)[0].detach().to(torch.float32).cpu().numpy()
coords = [int(x) for x in coords]
coords_list.append(coords)
probs = np.stack(probs_list, axis=-1) # (3, x, y, t)
coords = np.stack(coords_list, axis=-1) # (6, t)
return probs, coords
@spaces.GPU
def landmark_coordinate_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvViT,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
w, h, _, n_frames = images.shape
coords_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
coords = model(batch)[0].detach().to(torch.float32).cpu().numpy() # (6,)
coords *= np.array([w, h, w, h, w, h])
coords = [int(x) for x in coords]
coords_list.append(coords)
coords = np.stack(coords_list, axis=-1) # (6, t)
return coords
def landmark(image_id, view, method, seed, progress=gr.Progress()):
view = "lax_2c" if view == "LAX 2C" else "lax_4c"
method = method.lower()
# Download and load model
progress(0, desc="Downloading model...")
if method == "heatmap":
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
cache_dir=cache_dir,
)
elif method == "coordinate":
model = ConvViT.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
cache_dir=cache_dir,
)
else:
raise ValueError(f"Invalid method: {method}")
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(
sitk.GetArrayFromImage(
load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
)
)
if method == "heatmap":
_, coords = landmark_heatmap_inference(images, view, transform, model, progress)
elif method == "coordinate":
coords = landmark_coordinate_inference(images, view, transform, model, progress)
else:
raise ValueError(f"Invalid method: {method}")
landmark_fig = plot_landmarks(images, coords)
lv_fig = plot_lv(coords)
result = (landmark_fig, lv_fig)
plt.close(landmark_fig)
plt.close(lv_fig)
return result
def landmark_tab():
with gr.Blocks() as landmark_interface:
gr.Markdown(
"""
This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views.
Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example images from the UK Biobank.
### Model
The available models are finetuned on data from [Xue et al.](https://pubs.rsna.org/doi/10.1148/ryai.2021200197).
There are two types of landmark localisation models:
- **Heatmap**: predicts dense probability maps of landmarks
- **Coordinate**: predicts landmark coordinates directly
For each type, there are three models finetuned with seeds: 0, 1, 2.
### Visualisation
The left figure shows the landmark positions across all time frames.
The right figure shows the length of the left ventricle across all time frames and the estimates of two metrics:
- Mitral annular plane systolic excursion (MAPSE)
- Global longitudinal shortening (GLS)
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
view = gr.Dropdown(
choices=["LAX 2C", "LAX 4C"],
label="Choose which view to localise the landmarks",
value="LAX 2C",
)
with gr.Column(scale=3):
gr.Markdown("## Model Settings")
method = gr.Dropdown(
choices=["Heatmap", "Coordinate"],
label="Choose which method to use",
value="Heatmap",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run landmark localisation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Landmark Localisation")
landmark_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Left Ventricle Length Estimation")
lv_plot = gr.Plot(show_label=False)
run_button.click(
fn=landmark,
inputs=[image_id, view, method, seed],
outputs=[landmark_plot, lv_plot],
)
return landmark_interface
with gr.Blocks(
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
gr.Markdown(
"""
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
The following demos showcase the capabilities of CineMA in multiple tasks.
For more details, check out our [GitHub](https://github.com/mathpluscode/CineMA).
"""
)
with gr.Tabs(selected="lax_seg") as tabs:
with gr.TabItem("πΌοΈ Cine CMR Views", id="cmr"):
cmr_tab()
with gr.TabItem("π§© Masked Autoencoder", id="mae"):
mae_tab()
with gr.TabItem("βοΈ Segmentation in SAX View", id="sax_seg"):
segmentation_sax_tab()
with gr.TabItem("βοΈ Segmentation in LAX 4C View", id="lax_seg"):
segmentation_lax_tab()
with gr.TabItem("π Landmark Localisation in LAX 2C/4C View", id="landmark"):
landmark_tab()
demo.launch()
|