mathpluscode commited on
Commit
f468cfb
·
1 Parent(s): 5e04242

Improve texts

Browse files
Files changed (2) hide show
  1. app.py +13 -7
  2. requirements.txt +1 -1
app.py CHANGED
@@ -7,14 +7,9 @@ import requests
7
  import SimpleITK as sitk # noqa: N813
8
  import spaces
9
  import torch
10
- from huggingface_hub import hf_hub_download
11
- from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
12
- from tqdm import tqdm
13
-
14
  from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
15
  from cinema.examples.cine_cmr import plot_cmr_views
16
  from cinema.examples.inference.landmark_heatmap import (
17
- plot_heatmaps,
18
  plot_landmarks,
19
  plot_lv,
20
  )
@@ -34,6 +29,9 @@ from cinema.examples.inference.segmentation_sax import (
34
  from cinema.examples.inference.segmentation_sax import (
35
  plot_volume_changes as plot_volume_changes_sax,
36
  )
 
 
 
37
 
38
  # cache directories
39
  cache_dir = Path("/tmp/.cinema")
@@ -231,6 +229,8 @@ def mae_tab():
231
  gr.Markdown(
232
  """
233
  This page demonstrates the masking and reconstruction process of the masked autoencoder. The model was trained with a mask ratio of 0.75 over 74,000 studies.
 
 
234
  """
235
  )
236
  with gr.Row():
@@ -253,7 +253,7 @@ def mae_tab():
253
  label="Mask ratio",
254
  value=0.75,
255
  )
256
- run_button = gr.Button("Run Masked Autoencoder", variant="primary")
257
  run_button.click(
258
  fn=mae,
259
  inputs=[image_id, mask_ratio],
@@ -345,6 +345,8 @@ def segmentation_sax_tab():
345
  gr.Markdown(
346
  """
347
  This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view.
 
 
348
  """
349
  )
350
 
@@ -487,6 +489,8 @@ def segmentation_lax_tab():
487
  gr.Markdown(
488
  """
489
  This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view.
 
 
490
  """
491
  )
492
 
@@ -659,7 +663,9 @@ def landmark_tab():
659
  with gr.Blocks() as landmark_interface:
660
  gr.Markdown(
661
  """
662
- This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views
 
 
663
  """
664
  )
665
 
 
7
  import SimpleITK as sitk # noqa: N813
8
  import spaces
9
  import torch
 
 
 
 
10
  from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
11
  from cinema.examples.cine_cmr import plot_cmr_views
12
  from cinema.examples.inference.landmark_heatmap import (
 
13
  plot_landmarks,
14
  plot_lv,
15
  )
 
29
  from cinema.examples.inference.segmentation_sax import (
30
  plot_volume_changes as plot_volume_changes_sax,
31
  )
32
+ from huggingface_hub import hf_hub_download
33
+ from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
34
+ from tqdm import tqdm
35
 
36
  # cache directories
37
  cache_dir = Path("/tmp/.cinema")
 
229
  gr.Markdown(
230
  """
231
  This page demonstrates the masking and reconstruction process of the masked autoencoder. The model was trained with a mask ratio of 0.75 over 74,000 studies.
232
+
233
+ Visualisation may take a few seconds as we download the model weights, process the data, and render the plots.
234
  """
235
  )
236
  with gr.Row():
 
253
  label="Mask ratio",
254
  value=0.75,
255
  )
256
+ run_button = gr.Button("Run masked autoencoder", variant="primary")
257
  run_button.click(
258
  fn=mae,
259
  inputs=[image_id, mask_ratio],
 
345
  gr.Markdown(
346
  """
347
  This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view.
348
+
349
+ Visualisation may take dozens of seconds to update as we download model checkpoints, process multiple time frames sequentially, and generate the final plots.
350
  """
351
  )
352
 
 
489
  gr.Markdown(
490
  """
491
  This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view.
492
+
493
+ Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
494
  """
495
  )
496
 
 
663
  with gr.Blocks() as landmark_interface:
664
  gr.Markdown(
665
  """
666
+ This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views.
667
+
668
+ Visualisation may take a few seconds to update as we download model checkpoints, process multiple time frames, and generate the final plots.
669
  """
670
  )
671
 
requirements.txt CHANGED
@@ -17,6 +17,6 @@ scikit-learn==1.6.1
17
  scipy==1.15.2
18
  spaces==0.36.0
19
  timm==1.0.15
20
- git+https://github.com/mathpluscode/CineMA@460cf087e2a42f44ac80d6b0a722be0dcfbb755a#egg=cinema
21
  --extra-index-url https://download.pytorch.org/whl/cu113
22
  torch==2.5.1
 
17
  scipy==1.15.2
18
  spaces==0.36.0
19
  timm==1.0.15
20
+ git+https://github.com/mathpluscode/CineMA@af1958f51e475d3d6658132c6a680d4fc4a10cac#egg=cinema
21
  --extra-index-url https://download.pytorch.org/whl/cu113
22
  torch==2.5.1