Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
68ea82c
1
Parent(s):
91c04bb
Add LAX panel
Browse files
app.py
CHANGED
@@ -7,36 +7,50 @@ from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
|
|
7 |
from cinema import ConvUNetR
|
8 |
from pathlib import Path
|
9 |
from cinema.examples.inference.segmentation_sax import (
|
10 |
-
plot_segmentations,
|
11 |
-
plot_volume_changes,
|
12 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import spaces
|
|
|
14 |
|
15 |
# cache directories
|
16 |
cache_dir = Path("/tmp/.cinema")
|
17 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@spaces.GPU
|
21 |
-
def
|
22 |
images: torch.Tensor,
|
23 |
view: str,
|
24 |
transform: Compose,
|
25 |
model: ConvUNetR,
|
26 |
progress=gr.Progress(),
|
27 |
) -> np.ndarray:
|
28 |
-
# set device and dtype
|
29 |
-
dtype, device = torch.float32, torch.device("cpu")
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
device = torch.device("cuda")
|
32 |
-
if torch.cuda.is_bf16_supported():
|
33 |
-
dtype = torch.bfloat16
|
34 |
-
|
35 |
-
# inference
|
36 |
model.to(device)
|
37 |
n_slices, n_frames = images.shape[-2:]
|
38 |
labels_list = []
|
39 |
-
for t in range(0, n_frames):
|
40 |
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
|
41 |
batch = transform({view: torch.from_numpy(images[None, ..., t])})
|
42 |
batch = {
|
@@ -53,7 +67,7 @@ def inferece(
|
|
53 |
return labels
|
54 |
|
55 |
|
56 |
-
def
|
57 |
# Fixed parameters
|
58 |
view = "sax"
|
59 |
split = "train" if image_id <= 100 else "test"
|
@@ -64,7 +78,7 @@ def run_inference(trained_dataset, seed, image_id, t_step, progress=gr.Progress(
|
|
64 |
}[str(trained_dataset)]
|
65 |
|
66 |
# Download and load model
|
67 |
-
progress(0, desc="Downloading model
|
68 |
image_path = hf_hub_download(
|
69 |
repo_id="mathpluscode/ACDC",
|
70 |
repo_type="dataset",
|
@@ -79,7 +93,8 @@ def run_inference(trained_dataset, seed, image_id, t_step, progress=gr.Progress(
|
|
79 |
cache_dir=cache_dir,
|
80 |
)
|
81 |
|
82 |
-
#
|
|
|
83 |
transform = Compose(
|
84 |
[
|
85 |
ScaleIntensityd(keys=view),
|
@@ -89,91 +104,234 @@ def run_inference(trained_dataset, seed, image_id, t_step, progress=gr.Progress(
|
|
89 |
|
90 |
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
|
91 |
images = images[..., ::t_step]
|
92 |
-
labels =
|
93 |
|
94 |
progress(1, desc="Plotting results...")
|
95 |
-
fig1 =
|
96 |
-
fig2 =
|
97 |
|
98 |
return fig1, fig2
|
99 |
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
with gr.Blocks(
|
107 |
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
|
108 |
) as demo:
|
109 |
gr.Markdown(
|
110 |
"""
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
|
|
115 |
)
|
116 |
|
117 |
-
with gr.
|
118 |
-
with gr.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
### Data
|
124 |
-
|
125 |
-
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
|
126 |
-
Image 1 - 100 are from the training set, and image 101 - 150 are from the test set.
|
127 |
-
|
128 |
-
### Model
|
129 |
-
|
130 |
-
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2. The default model is the one finetuned on ACDC dataset with seed 0.
|
131 |
-
|
132 |
-
### Visualization
|
133 |
-
|
134 |
-
The left panel shows the segmentation of ventricles and myocardium every n time steps across all SAX slices.
|
135 |
-
The right panel plots the ventricle and mycoardium volumes across all inference time frames.
|
136 |
-
""")
|
137 |
-
with gr.Column(scale=3):
|
138 |
-
gr.Markdown("## Data Settings")
|
139 |
-
image_id = gr.Slider(
|
140 |
-
minimum=1,
|
141 |
-
maximum=150,
|
142 |
-
step=1,
|
143 |
-
label="Choose an ACDC image, ID is between 1 and 150",
|
144 |
-
value=150,
|
145 |
-
)
|
146 |
-
t_step = gr.Slider(
|
147 |
-
minimum=1,
|
148 |
-
maximum=10,
|
149 |
-
step=1,
|
150 |
-
label="Choose the gap between time frames",
|
151 |
-
value=2,
|
152 |
-
)
|
153 |
-
with gr.Column(scale=3):
|
154 |
-
gr.Markdown("## Model Setting")
|
155 |
-
trained_dataset = gr.Dropdown(
|
156 |
-
choices=["ACDC", "M&MS", "M&MS2"],
|
157 |
-
label="Choose which dataset the segmentation model was finetuned on",
|
158 |
-
value="ACDC",
|
159 |
-
)
|
160 |
-
seed = gr.Slider(
|
161 |
-
minimum=0,
|
162 |
-
maximum=2,
|
163 |
-
step=1,
|
164 |
-
label="Choose which seed the finetuning used",
|
165 |
-
value=0,
|
166 |
-
)
|
167 |
-
run_button = gr.Button("Run segmentation inference", variant="primary")
|
168 |
-
|
169 |
-
with gr.Row():
|
170 |
-
segmentation_plot = gr.Plot(label="Ventricle and Myocardium Segmentation")
|
171 |
-
volume_plot = gr.Plot(label="Ejection Fraction Prediction")
|
172 |
-
|
173 |
-
run_button.click(
|
174 |
-
fn=run_inference,
|
175 |
-
inputs=[trained_dataset, seed, image_id, t_step],
|
176 |
-
outputs=[segmentation_plot, volume_plot],
|
177 |
-
)
|
178 |
|
179 |
demo.launch()
|
|
|
7 |
from cinema import ConvUNetR
|
8 |
from pathlib import Path
|
9 |
from cinema.examples.inference.segmentation_sax import (
|
10 |
+
plot_segmentations as plot_segmentations_sax,
|
11 |
+
plot_volume_changes as plot_volume_changes_sax,
|
12 |
)
|
13 |
+
from cinema.examples.inference.segmentation_lax_4c import (
|
14 |
+
plot_segmentations as plot_segmentations_lax,
|
15 |
+
plot_volume_changes as plot_volume_changes_lax,
|
16 |
+
post_process as post_process_lax_segmentation,
|
17 |
+
)
|
18 |
+
from tqdm import tqdm
|
19 |
import spaces
|
20 |
+
import requests
|
21 |
|
22 |
# cache directories
|
23 |
cache_dir = Path("/tmp/.cinema")
|
24 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
25 |
|
26 |
|
27 |
+
# set device and dtype
|
28 |
+
dtype, device = torch.float32, torch.device("cpu")
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
device = torch.device("cuda")
|
31 |
+
if torch.cuda.is_bf16_supported():
|
32 |
+
dtype = torch.bfloat16
|
33 |
+
|
34 |
+
|
35 |
+
# Create the Gradio interface
|
36 |
+
theme = gr.themes.Ocean(
|
37 |
+
primary_hue="red",
|
38 |
+
secondary_hue="purple",
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
@spaces.GPU
|
43 |
+
def segmentation_sax_inference(
|
44 |
images: torch.Tensor,
|
45 |
view: str,
|
46 |
transform: Compose,
|
47 |
model: ConvUNetR,
|
48 |
progress=gr.Progress(),
|
49 |
) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
model.to(device)
|
51 |
n_slices, n_frames = images.shape[-2:]
|
52 |
labels_list = []
|
53 |
+
for t in tqdm(range(0, n_frames), total=n_frames):
|
54 |
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
|
55 |
batch = transform({view: torch.from_numpy(images[None, ..., t])})
|
56 |
batch = {
|
|
|
67 |
return labels
|
68 |
|
69 |
|
70 |
+
def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
|
71 |
# Fixed parameters
|
72 |
view = "sax"
|
73 |
split = "train" if image_id <= 100 else "test"
|
|
|
78 |
}[str(trained_dataset)]
|
79 |
|
80 |
# Download and load model
|
81 |
+
progress(0, desc="Downloading model...")
|
82 |
image_path = hf_hub_download(
|
83 |
repo_id="mathpluscode/ACDC",
|
84 |
repo_type="dataset",
|
|
|
93 |
cache_dir=cache_dir,
|
94 |
)
|
95 |
|
96 |
+
# Inference
|
97 |
+
progress(0, desc="Downloading data...")
|
98 |
transform = Compose(
|
99 |
[
|
100 |
ScaleIntensityd(keys=view),
|
|
|
104 |
|
105 |
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
|
106 |
images = images[..., ::t_step]
|
107 |
+
labels = segmentation_sax_inference(images, view, transform, model, progress)
|
108 |
|
109 |
progress(1, desc="Plotting results...")
|
110 |
+
fig1 = plot_segmentations_sax(images, labels, t_step)
|
111 |
+
fig2 = plot_volume_changes_sax(labels, t_step)
|
112 |
|
113 |
return fig1, fig2
|
114 |
|
115 |
|
116 |
+
def segmentation_sax_tab():
|
117 |
+
with gr.Blocks() as sax_interface:
|
118 |
+
gr.Markdown(
|
119 |
+
"""
|
120 |
+
This page demonstrates the segmentation of cardiac structures in the Short-Axis (SAX) view.
|
121 |
+
Please adjust the settings on the right panels and click the button to run the inference.
|
122 |
+
"""
|
123 |
+
)
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column(scale=4):
|
127 |
+
gr.Markdown("""
|
128 |
+
## Description
|
129 |
+
### Data
|
130 |
+
|
131 |
+
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
|
132 |
+
Image 1 - 100 are from the training set, and image 101 - 150 are from the test set.
|
133 |
+
|
134 |
+
### Model
|
135 |
+
|
136 |
+
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
|
137 |
+
|
138 |
+
### Visualization
|
139 |
+
|
140 |
+
The left figure shows the segmentation of ventricles and myocardium every n time steps across all SAX slices.
|
141 |
+
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
|
142 |
+
""")
|
143 |
+
with gr.Column(scale=3):
|
144 |
+
gr.Markdown("## Data Settings")
|
145 |
+
image_id = gr.Slider(
|
146 |
+
minimum=1,
|
147 |
+
maximum=150,
|
148 |
+
step=1,
|
149 |
+
label="Choose an ACDC image, ID is between 1 and 150",
|
150 |
+
value=150,
|
151 |
+
)
|
152 |
+
t_step = gr.Slider(
|
153 |
+
minimum=1,
|
154 |
+
maximum=10,
|
155 |
+
step=1,
|
156 |
+
label="Choose the gap between time frames",
|
157 |
+
value=2,
|
158 |
+
)
|
159 |
+
with gr.Column(scale=3):
|
160 |
+
gr.Markdown("## Model Setting")
|
161 |
+
trained_dataset = gr.Dropdown(
|
162 |
+
choices=["ACDC", "M&MS", "M&MS2"],
|
163 |
+
label="Choose which dataset the segmentation model was finetuned on",
|
164 |
+
value="ACDC",
|
165 |
+
)
|
166 |
+
seed = gr.Slider(
|
167 |
+
minimum=0,
|
168 |
+
maximum=2,
|
169 |
+
step=1,
|
170 |
+
label="Choose which seed the finetuning used",
|
171 |
+
value=0,
|
172 |
+
)
|
173 |
+
run_button = gr.Button("Run SAX segmentation inference", variant="primary")
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column():
|
177 |
+
gr.Markdown("## Ventricle and Myocardium Segmentation")
|
178 |
+
segmentation_plot = gr.Plot(show_label=False)
|
179 |
+
with gr.Column():
|
180 |
+
gr.Markdown("## Ejection Fraction Prediction")
|
181 |
+
volume_plot = gr.Plot(show_label=False)
|
182 |
+
|
183 |
+
run_button.click(
|
184 |
+
fn=segmentation_sax,
|
185 |
+
inputs=[trained_dataset, seed, image_id, t_step],
|
186 |
+
outputs=[segmentation_plot, volume_plot],
|
187 |
+
)
|
188 |
+
return sax_interface
|
189 |
+
|
190 |
+
|
191 |
+
@spaces.GPU
|
192 |
+
def segmentation_lax_inference(
|
193 |
+
images: torch.Tensor,
|
194 |
+
view: str,
|
195 |
+
transform: Compose,
|
196 |
+
model: ConvUNetR,
|
197 |
+
progress=gr.Progress(),
|
198 |
+
) -> np.ndarray:
|
199 |
+
model.to(device)
|
200 |
+
n_frames = images.shape[-1]
|
201 |
+
labels_list = []
|
202 |
+
for t in tqdm(range(n_frames), total=n_frames):
|
203 |
+
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
|
204 |
+
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
|
205 |
+
batch = {
|
206 |
+
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
|
207 |
+
}
|
208 |
+
with (
|
209 |
+
torch.no_grad(),
|
210 |
+
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
|
211 |
+
):
|
212 |
+
logits = model(batch)[view] # (1, 4, x, y)
|
213 |
+
labels = torch.argmax(logits, dim=1)[0].detach().cpu().numpy() # (x, y)
|
214 |
+
|
215 |
+
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
|
216 |
+
# find the connected component that is closest to left ventricle
|
217 |
+
labels = post_process_lax_segmentation(labels)
|
218 |
+
labels_list.append(labels)
|
219 |
+
labels = np.stack(labels_list, axis=-1) # (x, y, t)
|
220 |
+
return labels
|
221 |
+
|
222 |
+
|
223 |
+
def segmentation_lax(seed, image_id, progress=gr.Progress()):
|
224 |
+
# Fixed parameters
|
225 |
+
trained_dataset = "mnms2"
|
226 |
+
view = "lax_4c"
|
227 |
+
|
228 |
+
# Download and load model
|
229 |
+
progress(0, desc="Downloading model...")
|
230 |
+
image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/ukb/{image_id}/{image_id}_{view}.nii.gz"
|
231 |
+
image_path = cache_dir / f"{image_id}_{view}.nii.gz"
|
232 |
+
response = requests.get(image_url)
|
233 |
+
with open(image_path, "wb") as f:
|
234 |
+
f.write(response.content)
|
235 |
+
|
236 |
+
model = ConvUNetR.from_finetuned(
|
237 |
+
repo_id="mathpluscode/CineMA",
|
238 |
+
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
|
239 |
+
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
|
240 |
+
cache_dir=cache_dir,
|
241 |
+
)
|
242 |
+
|
243 |
+
# Inference
|
244 |
+
progress(0, desc="Downloading data...")
|
245 |
+
transform = ScaleIntensityd(keys=view)
|
246 |
+
|
247 |
+
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
|
248 |
+
labels = segmentation_lax_inference(images, view, transform, model, progress)
|
249 |
+
|
250 |
+
progress(1, desc="Plotting results...")
|
251 |
+
fig1 = plot_segmentations_lax(images, labels)
|
252 |
+
fig2 = plot_volume_changes_lax(labels)
|
253 |
+
|
254 |
+
return fig1, fig2
|
255 |
+
|
256 |
+
|
257 |
+
def segmentation_lax_tab():
|
258 |
+
with gr.Blocks() as lax_interface:
|
259 |
+
gr.Markdown(
|
260 |
+
"""
|
261 |
+
This page demonstrates the segmentation of cardiac structures in the Long-Axis (LAX) view.
|
262 |
+
Please adjust the settings on the right panels and click the button to run the inference.
|
263 |
+
"""
|
264 |
+
)
|
265 |
+
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column(scale=4):
|
268 |
+
gr.Markdown("""
|
269 |
+
## Description
|
270 |
+
### Data
|
271 |
+
|
272 |
+
There are four example samples. All images have been resampled to 1 mm Γ 1 mm and centre-cropped.
|
273 |
+
|
274 |
+
### Model
|
275 |
+
|
276 |
+
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
|
277 |
+
|
278 |
+
### Visualization
|
279 |
+
|
280 |
+
The left figure shows the segmentation of ventricles and myocardium across all time frames.
|
281 |
+
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
|
282 |
+
""")
|
283 |
+
with gr.Column(scale=3):
|
284 |
+
gr.Markdown("## Data Settings")
|
285 |
+
image_id = gr.Slider(
|
286 |
+
minimum=1,
|
287 |
+
maximum=4,
|
288 |
+
step=1,
|
289 |
+
label="Choose an image, ID is between 1 and 4",
|
290 |
+
value=4,
|
291 |
+
)
|
292 |
+
with gr.Column(scale=3):
|
293 |
+
gr.Markdown("## Model Setting")
|
294 |
+
seed = gr.Slider(
|
295 |
+
minimum=0,
|
296 |
+
maximum=2,
|
297 |
+
step=1,
|
298 |
+
label="Choose which seed the finetuning used",
|
299 |
+
value=0,
|
300 |
+
)
|
301 |
+
run_button = gr.Button("Run LAX segmentation inference", variant="primary")
|
302 |
+
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column():
|
305 |
+
gr.Markdown("## Ventricle and Myocardium Segmentation")
|
306 |
+
segmentation_plot = gr.Plot(show_label=False)
|
307 |
+
with gr.Column():
|
308 |
+
gr.Markdown("## Ejection Fraction Prediction")
|
309 |
+
volume_plot = gr.Plot(show_label=False)
|
310 |
+
|
311 |
+
run_button.click(
|
312 |
+
fn=segmentation_lax,
|
313 |
+
inputs=[seed, image_id],
|
314 |
+
outputs=[segmentation_plot, volume_plot],
|
315 |
+
)
|
316 |
+
return lax_interface
|
317 |
+
|
318 |
+
|
319 |
with gr.Blocks(
|
320 |
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
|
321 |
) as demo:
|
322 |
gr.Markdown(
|
323 |
"""
|
324 |
+
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
|
325 |
|
326 |
+
This demo showcases the capabilities of CineMA in multiple tasks.
|
327 |
+
For more details, checkout our [GitHub](https://github.com/mathpluscode/CineMA).
|
328 |
+
"""
|
329 |
)
|
330 |
|
331 |
+
with gr.Tabs() as tabs:
|
332 |
+
with gr.TabItem("Segmentation in SAX View"):
|
333 |
+
segmentation_sax_tab()
|
334 |
+
with gr.TabItem("Segmentation in LAX View"):
|
335 |
+
segmentation_lax_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
demo.launch()
|