Spaces:
Sleeping
Sleeping
# refer to: | |
# https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/model_conformer_naive.py | |
# https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/naive_v2_diff.py | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from modules.commons.common_layers import SinusoidalPosEmb, SwiGLU | |
from utils.hparams import hparams | |
class Conv1d(torch.nn.Conv1d): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
nn.init.kaiming_normal_(self.weight) | |
class Transpose(nn.Module): | |
def __init__(self, dims): | |
super().__init__() | |
assert len(dims) == 2, 'dims must be a tuple of two dimensions' | |
self.dims = dims | |
def forward(self, x): | |
return x.transpose(*self.dims) | |
class LYNXConvModule(nn.Module): | |
def calc_same_padding(kernel_size): | |
pad = kernel_size // 2 | |
return pad, pad - (kernel_size + 1) % 2 | |
def __init__(self, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0): | |
super().__init__() | |
inner_dim = dim * expansion_factor | |
activation_classes = { | |
'SiLU': nn.SiLU, | |
'ReLU': nn.ReLU, | |
'PReLU': lambda: nn.PReLU(inner_dim) | |
} | |
activation = activation if activation is not None else 'PReLU' | |
if activation not in activation_classes: | |
raise ValueError(f'{activation} is not a valid activation') | |
_activation = activation_classes[activation]() | |
padding = self.calc_same_padding(kernel_size) | |
if float(dropout) > 0.: | |
_dropout = nn.Dropout(dropout) | |
else: | |
_dropout = nn.Identity() | |
self.net = nn.Sequential( | |
nn.LayerNorm(dim), | |
Transpose((1, 2)), | |
nn.Conv1d(dim, inner_dim * 2, 1), | |
SwiGLU(dim=1), | |
nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding[0], groups=inner_dim), | |
_activation, | |
nn.Conv1d(inner_dim, dim, 1), | |
Transpose((1, 2)), | |
_dropout | |
) | |
def forward(self, x): | |
return self.net(x) | |
class LYNXNetResidualLayer(nn.Module): | |
def __init__(self, dim_cond, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0): | |
super().__init__() | |
self.diffusion_projection = nn.Conv1d(dim, dim, 1) | |
self.conditioner_projection = nn.Conv1d(dim_cond, dim, 1) | |
self.convmodule = LYNXConvModule(dim=dim, expansion_factor=expansion_factor, kernel_size=kernel_size, | |
activation=activation, dropout=dropout) | |
def forward(self, x, conditioner, diffusion_step, front_cond_inject=False): | |
if front_cond_inject: | |
x = x + self.conditioner_projection(conditioner) | |
res_x = x | |
else: | |
res_x = x | |
x = x + self.conditioner_projection(conditioner) | |
x = x + self.diffusion_projection(diffusion_step) | |
x = x.transpose(1, 2) | |
x = self.convmodule(x) # (#batch, dim, length) | |
x = x.transpose(1, 2) + res_x | |
return x # (#batch, length, dim) | |
class LYNXNet(nn.Module): | |
def __init__(self, in_dims, n_feats, *, num_layers=6, num_channels=512, expansion_factor=2, kernel_size=31, | |
activation='PReLU', dropout=0.0, strong_cond=False): | |
""" | |
LYNXNet(Linear Gated Depthwise Separable Convolution Network) | |
TIPS:You can control the style of the generated results by modifying the 'activation', | |
- 'PReLU'(default) : Similar to WaveNet | |
- 'SiLU' : Voice will be more pronounced, not recommended for use under DDPM | |
- 'ReLU' : Contrary to 'SiLU', Voice will be weakened | |
""" | |
super().__init__() | |
self.in_dims = in_dims | |
self.n_feats = n_feats | |
self.input_projection = Conv1d(in_dims * n_feats, num_channels, 1) | |
self.diffusion_embedding = nn.Sequential( | |
SinusoidalPosEmb(num_channels), | |
nn.Linear(num_channels, num_channels * 4), | |
nn.GELU(), | |
nn.Linear(num_channels * 4, num_channels), | |
) | |
self.residual_layers = nn.ModuleList( | |
[ | |
LYNXNetResidualLayer( | |
dim_cond=hparams['hidden_size'], | |
dim=num_channels, | |
expansion_factor=expansion_factor, | |
kernel_size=kernel_size, | |
activation=activation, | |
dropout=dropout | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.norm = nn.LayerNorm(num_channels) | |
self.output_projection = Conv1d(num_channels, in_dims * n_feats, kernel_size=1) | |
self.strong_cond = strong_cond | |
nn.init.zeros_(self.output_projection.weight) | |
def forward(self, spec, diffusion_step, cond): | |
""" | |
:param spec: [B, F, M, T] | |
:param diffusion_step: [B, 1] | |
:param cond: [B, H, T] | |
:return: | |
""" | |
if self.n_feats == 1: | |
x = spec[:, 0] # [B, M, T] | |
else: | |
x = spec.flatten(start_dim=1, end_dim=2) # [B, F x M, T] | |
x = self.input_projection(x) # x [B, residual_channel, T] | |
if not self.strong_cond: | |
x = F.gelu(x) | |
diffusion_step = self.diffusion_embedding(diffusion_step).unsqueeze(-1) | |
for layer in self.residual_layers: | |
x = layer(x, cond, diffusion_step, front_cond_inject=self.strong_cond) | |
# post-norm | |
x = self.norm(x.transpose(1, 2)).transpose(1, 2) | |
# MLP and GLU | |
x = self.output_projection(x) # [B, 128, T] | |
if self.n_feats == 1: | |
x = x[:, None, :, :] | |
else: | |
# This is the temporary solution since PyTorch 1.13 | |
# does not support exporting aten::unflatten to ONNX | |
# x = x.unflatten(dim=1, sizes=(self.n_feats, self.in_dims)) | |
x = x.reshape(-1, self.n_feats, self.in_dims, x.shape[2]) | |
return x | |