# refer to: # https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/model_conformer_naive.py # https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/naive_v2_diff.py import torch import torch.nn as nn import torch.nn.functional as F from modules.commons.common_layers import SinusoidalPosEmb, SwiGLU from utils.hparams import hparams class Conv1d(torch.nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) nn.init.kaiming_normal_(self.weight) class Transpose(nn.Module): def __init__(self, dims): super().__init__() assert len(dims) == 2, 'dims must be a tuple of two dimensions' self.dims = dims def forward(self, x): return x.transpose(*self.dims) class LYNXConvModule(nn.Module): @staticmethod def calc_same_padding(kernel_size): pad = kernel_size // 2 return pad, pad - (kernel_size + 1) % 2 def __init__(self, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0): super().__init__() inner_dim = dim * expansion_factor activation_classes = { 'SiLU': nn.SiLU, 'ReLU': nn.ReLU, 'PReLU': lambda: nn.PReLU(inner_dim) } activation = activation if activation is not None else 'PReLU' if activation not in activation_classes: raise ValueError(f'{activation} is not a valid activation') _activation = activation_classes[activation]() padding = self.calc_same_padding(kernel_size) if float(dropout) > 0.: _dropout = nn.Dropout(dropout) else: _dropout = nn.Identity() self.net = nn.Sequential( nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), SwiGLU(dim=1), nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding[0], groups=inner_dim), _activation, nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), _dropout ) def forward(self, x): return self.net(x) class LYNXNetResidualLayer(nn.Module): def __init__(self, dim_cond, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0): super().__init__() self.diffusion_projection = nn.Conv1d(dim, dim, 1) self.conditioner_projection = nn.Conv1d(dim_cond, dim, 1) self.convmodule = LYNXConvModule(dim=dim, expansion_factor=expansion_factor, kernel_size=kernel_size, activation=activation, dropout=dropout) def forward(self, x, conditioner, diffusion_step, front_cond_inject=False): if front_cond_inject: x = x + self.conditioner_projection(conditioner) res_x = x else: res_x = x x = x + self.conditioner_projection(conditioner) x = x + self.diffusion_projection(diffusion_step) x = x.transpose(1, 2) x = self.convmodule(x) # (#batch, dim, length) x = x.transpose(1, 2) + res_x return x # (#batch, length, dim) class LYNXNet(nn.Module): def __init__(self, in_dims, n_feats, *, num_layers=6, num_channels=512, expansion_factor=2, kernel_size=31, activation='PReLU', dropout=0.0, strong_cond=False): """ LYNXNet(Linear Gated Depthwise Separable Convolution Network) TIPS:You can control the style of the generated results by modifying the 'activation', - 'PReLU'(default) : Similar to WaveNet - 'SiLU' : Voice will be more pronounced, not recommended for use under DDPM - 'ReLU' : Contrary to 'SiLU', Voice will be weakened """ super().__init__() self.in_dims = in_dims self.n_feats = n_feats self.input_projection = Conv1d(in_dims * n_feats, num_channels, 1) self.diffusion_embedding = nn.Sequential( SinusoidalPosEmb(num_channels), nn.Linear(num_channels, num_channels * 4), nn.GELU(), nn.Linear(num_channels * 4, num_channels), ) self.residual_layers = nn.ModuleList( [ LYNXNetResidualLayer( dim_cond=hparams['hidden_size'], dim=num_channels, expansion_factor=expansion_factor, kernel_size=kernel_size, activation=activation, dropout=dropout ) for i in range(num_layers) ] ) self.norm = nn.LayerNorm(num_channels) self.output_projection = Conv1d(num_channels, in_dims * n_feats, kernel_size=1) self.strong_cond = strong_cond nn.init.zeros_(self.output_projection.weight) def forward(self, spec, diffusion_step, cond): """ :param spec: [B, F, M, T] :param diffusion_step: [B, 1] :param cond: [B, H, T] :return: """ if self.n_feats == 1: x = spec[:, 0] # [B, M, T] else: x = spec.flatten(start_dim=1, end_dim=2) # [B, F x M, T] x = self.input_projection(x) # x [B, residual_channel, T] if not self.strong_cond: x = F.gelu(x) diffusion_step = self.diffusion_embedding(diffusion_step).unsqueeze(-1) for layer in self.residual_layers: x = layer(x, cond, diffusion_step, front_cond_inject=self.strong_cond) # post-norm x = self.norm(x.transpose(1, 2)).transpose(1, 2) # MLP and GLU x = self.output_projection(x) # [B, 128, T] if self.n_feats == 1: x = x[:, None, :, :] else: # This is the temporary solution since PyTorch 1.13 # does not support exporting aten::unflatten to ONNX # x = x.unflatten(dim=1, sizes=(self.n_feats, self.in_dims)) x = x.reshape(-1, self.n_feats, self.in_dims, x.shape[2]) return x