File size: 6,064 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# refer to: 
# https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/model_conformer_naive.py
# https://github.com/CNChTu/Diffusion-SVC/blob/v2.0_dev/diffusion/naive_v2/naive_v2_diff.py

import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.commons.common_layers import SinusoidalPosEmb, SwiGLU
from utils.hparams import hparams


class Conv1d(torch.nn.Conv1d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        nn.init.kaiming_normal_(self.weight)


class Transpose(nn.Module):
    def __init__(self, dims):
        super().__init__()
        assert len(dims) == 2, 'dims must be a tuple of two dimensions'
        self.dims = dims

    def forward(self, x):
        return x.transpose(*self.dims)


class LYNXConvModule(nn.Module):
    @staticmethod
    def calc_same_padding(kernel_size):
        pad = kernel_size // 2
        return pad, pad - (kernel_size + 1) % 2

    def __init__(self, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0):
        super().__init__()
        inner_dim = dim * expansion_factor
        activation_classes = {
            'SiLU': nn.SiLU,
            'ReLU': nn.ReLU,
            'PReLU': lambda: nn.PReLU(inner_dim)
        }
        activation = activation if activation is not None else 'PReLU'
        if activation not in activation_classes:
            raise ValueError(f'{activation} is not a valid activation')
        _activation = activation_classes[activation]()
        padding = self.calc_same_padding(kernel_size)
        if float(dropout) > 0.:
            _dropout = nn.Dropout(dropout)
        else:
            _dropout = nn.Identity()
        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            Transpose((1, 2)),
            nn.Conv1d(dim, inner_dim * 2, 1),
            SwiGLU(dim=1),
            nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding[0], groups=inner_dim),
            _activation,
            nn.Conv1d(inner_dim, dim, 1),
            Transpose((1, 2)),
            _dropout
        )

    def forward(self, x):
        return self.net(x)


class LYNXNetResidualLayer(nn.Module):
    def __init__(self, dim_cond, dim, expansion_factor, kernel_size=31, activation='PReLU', dropout=0.0):
        super().__init__()
        self.diffusion_projection = nn.Conv1d(dim, dim, 1)
        self.conditioner_projection = nn.Conv1d(dim_cond, dim, 1)
        self.convmodule = LYNXConvModule(dim=dim, expansion_factor=expansion_factor, kernel_size=kernel_size,
                                         activation=activation, dropout=dropout)

    def forward(self, x, conditioner, diffusion_step, front_cond_inject=False):
        if front_cond_inject:
            x = x + self.conditioner_projection(conditioner)
            res_x = x
        else:
            res_x = x
            x = x + self.conditioner_projection(conditioner)
        x = x + self.diffusion_projection(diffusion_step)
        x = x.transpose(1, 2)
        x = self.convmodule(x)  # (#batch, dim, length) 
        x = x.transpose(1, 2) + res_x
        return x  # (#batch, length, dim)


class LYNXNet(nn.Module):
    def __init__(self, in_dims, n_feats, *, num_layers=6, num_channels=512, expansion_factor=2, kernel_size=31,
                 activation='PReLU', dropout=0.0, strong_cond=False):
        """
        LYNXNet(Linear Gated Depthwise Separable Convolution Network)
        TIPS:You can control the style of the generated results by modifying the 'activation', 
            - 'PReLU'(default) : Similar to WaveNet
            - 'SiLU' : Voice will be more pronounced, not recommended for use under DDPM
            - 'ReLU' : Contrary to 'SiLU', Voice will be weakened
        """
        super().__init__()
        self.in_dims = in_dims
        self.n_feats = n_feats
        self.input_projection = Conv1d(in_dims * n_feats, num_channels, 1)
        self.diffusion_embedding = nn.Sequential(
            SinusoidalPosEmb(num_channels),
            nn.Linear(num_channels, num_channels * 4),
            nn.GELU(),
            nn.Linear(num_channels * 4, num_channels),
        )
        self.residual_layers = nn.ModuleList(
            [
                LYNXNetResidualLayer(
                    dim_cond=hparams['hidden_size'],
                    dim=num_channels,
                    expansion_factor=expansion_factor,
                    kernel_size=kernel_size,
                    activation=activation,
                    dropout=dropout
                )
                for i in range(num_layers)
            ]
        )
        self.norm = nn.LayerNorm(num_channels)
        self.output_projection = Conv1d(num_channels, in_dims * n_feats, kernel_size=1)
        self.strong_cond = strong_cond
        nn.init.zeros_(self.output_projection.weight)

    def forward(self, spec, diffusion_step, cond):
        """
        :param spec: [B, F, M, T]
        :param diffusion_step: [B, 1]
        :param cond: [B, H, T]
        :return:
        """

        if self.n_feats == 1:
            x = spec[:, 0]  # [B, M, T]
        else:
            x = spec.flatten(start_dim=1, end_dim=2)  # [B, F x M, T]

        x = self.input_projection(x)  # x [B, residual_channel, T]
        if not self.strong_cond:
            x = F.gelu(x)

        diffusion_step = self.diffusion_embedding(diffusion_step).unsqueeze(-1)

        for layer in self.residual_layers:
            x = layer(x, cond, diffusion_step, front_cond_inject=self.strong_cond)

        # post-norm
        x = self.norm(x.transpose(1, 2)).transpose(1, 2)

        # MLP and GLU
        x = self.output_projection(x)  # [B, 128, T]

        if self.n_feats == 1:
            x = x[:, None, :, :]
        else:
            # This is the temporary solution since PyTorch 1.13
            # does not support exporting aten::unflatten to ONNX
            # x = x.unflatten(dim=1, sizes=(self.n_feats, self.in_dims))
            x = x.reshape(-1, self.n_feats, self.in_dims, x.shape[2])
        return x