Spaces:
Build error
Build error
import gradio as gr | |
import subprocess | |
import pandas as pd | |
import uuid | |
import os | |
def run_prediction(data_path, model_path, prediction_type="classification", output_path="results.csv"): | |
command = [ | |
"python", model_path, | |
"--data_path", data_path, | |
"--checkpoint_path", model_path.replace("predict.py", "../models/fusion_model.pt" if "mod" in model_path else "../models/vanilla_model.pt"), | |
"--prediction_type", prediction_type, | |
"--save_dir", ".", | |
"--preds_path", output_path | |
] | |
subprocess.run(command, check=True) | |
return pd.read_csv(output_path) | |
def predict_from_smiles(smiles, model_choice, dataset_choice): | |
temp_id = uuid.uuid4().hex | |
temp_csv = f"data/temp_{temp_id}.csv" | |
out_csv = f"data/output_{temp_id}.csv" | |
df = pd.DataFrame([{"smiles": smiles, "compound_name": "molecule"}]) | |
df.to_csv(temp_csv, index=False) | |
model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py" | |
try: | |
predictions = run_prediction(temp_csv, model_path, output_path=out_csv) | |
return predictions | |
except subprocess.CalledProcessError as e: | |
return f"Error: {str(e)}" | |
def predict_from_file(file_obj, model_choice, dataset_choice): | |
temp_id = uuid.uuid4().hex | |
file_path = f"data/uploaded_{temp_id}.csv" | |
out_csv = f"data/output_file_{temp_id}.csv" | |
with open(file_path, "wb") as f: | |
f.write(file_obj.read()) | |
model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py" | |
try: | |
predictions = run_prediction(file_path, model_path, output_path=out_csv) | |
return predictions | |
except subprocess.CalledProcessError as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🧪 Drug Property Prediction with Fusion Models") | |
gr.Markdown("Choose prediction input type and compare Chemprop vs Fusion model") | |
with gr.Tab("Single SMILES"): | |
with gr.Row(): | |
smiles_input = gr.Textbox(label="Enter SMILES string") | |
model_select = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model") | |
dataset_select = gr.Dropdown(["BBBP", "BACE"], label="Dataset") | |
predict_button = gr.Button("Predict") | |
result_output = gr.Dataframe(label="Prediction Result") | |
predict_button.click(fn=predict_from_smiles, inputs=[smiles_input, model_select, dataset_select], outputs=result_output) | |
with gr.Tab("Upload File"): | |
with gr.Row(): | |
file_input = gr.File(label="Upload CSV File") | |
model_select_file = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model") | |
dataset_select_file = gr.Dropdown(["BBBP", "BACE"], label="Dataset") | |
predict_button_file = gr.Button("Predict") | |
result_output_file = gr.Dataframe(label="Prediction Result") | |
predict_button_file.click(fn=predict_from_file, inputs=[file_input, model_select_file, dataset_select_file], outputs=result_output_file) | |
demo.launch() | |