import gradio as gr import subprocess import pandas as pd import uuid import os def run_prediction(data_path, model_path, prediction_type="classification", output_path="results.csv"): command = [ "python", model_path, "--data_path", data_path, "--checkpoint_path", model_path.replace("predict.py", "../models/fusion_model.pt" if "mod" in model_path else "../models/vanilla_model.pt"), "--prediction_type", prediction_type, "--save_dir", ".", "--preds_path", output_path ] subprocess.run(command, check=True) return pd.read_csv(output_path) def predict_from_smiles(smiles, model_choice, dataset_choice): temp_id = uuid.uuid4().hex temp_csv = f"data/temp_{temp_id}.csv" out_csv = f"data/output_{temp_id}.csv" df = pd.DataFrame([{"smiles": smiles, "compound_name": "molecule"}]) df.to_csv(temp_csv, index=False) model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py" try: predictions = run_prediction(temp_csv, model_path, output_path=out_csv) return predictions except subprocess.CalledProcessError as e: return f"Error: {str(e)}" def predict_from_file(file_obj, model_choice, dataset_choice): temp_id = uuid.uuid4().hex file_path = f"data/uploaded_{temp_id}.csv" out_csv = f"data/output_file_{temp_id}.csv" with open(file_path, "wb") as f: f.write(file_obj.read()) model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py" try: predictions = run_prediction(file_path, model_path, output_path=out_csv) return predictions except subprocess.CalledProcessError as e: return f"Error: {str(e)}" with gr.Blocks() as demo: gr.Markdown("## 🧪 Drug Property Prediction with Fusion Models") gr.Markdown("Choose prediction input type and compare Chemprop vs Fusion model") with gr.Tab("Single SMILES"): with gr.Row(): smiles_input = gr.Textbox(label="Enter SMILES string") model_select = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model") dataset_select = gr.Dropdown(["BBBP", "BACE"], label="Dataset") predict_button = gr.Button("Predict") result_output = gr.Dataframe(label="Prediction Result") predict_button.click(fn=predict_from_smiles, inputs=[smiles_input, model_select, dataset_select], outputs=result_output) with gr.Tab("Upload File"): with gr.Row(): file_input = gr.File(label="Upload CSV File") model_select_file = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model") dataset_select_file = gr.Dropdown(["BBBP", "BACE"], label="Dataset") predict_button_file = gr.Button("Predict") result_output_file = gr.Dataframe(label="Prediction Result") predict_button_file.click(fn=predict_from_file, inputs=[file_input, model_select_file, dataset_select_file], outputs=result_output_file) demo.launch()