Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import pandas as pd
|
4 |
+
import uuid
|
5 |
+
import os
|
6 |
+
|
7 |
+
def run_prediction(data_path, model_path, prediction_type="classification", output_path="results.csv"):
|
8 |
+
command = [
|
9 |
+
"python", model_path,
|
10 |
+
"--data_path", data_path,
|
11 |
+
"--checkpoint_path", model_path.replace("predict.py", "../models/fusion_model.pt" if "mod" in model_path else "../models/vanilla_model.pt"),
|
12 |
+
"--prediction_type", prediction_type,
|
13 |
+
"--save_dir", ".",
|
14 |
+
"--preds_path", output_path
|
15 |
+
]
|
16 |
+
subprocess.run(command, check=True)
|
17 |
+
return pd.read_csv(output_path)
|
18 |
+
|
19 |
+
def predict_from_smiles(smiles, model_choice, dataset_choice):
|
20 |
+
temp_id = uuid.uuid4().hex
|
21 |
+
temp_csv = f"data/temp_{temp_id}.csv"
|
22 |
+
out_csv = f"data/output_{temp_id}.csv"
|
23 |
+
df = pd.DataFrame([{"smiles": smiles, "compound_name": "molecule"}])
|
24 |
+
df.to_csv(temp_csv, index=False)
|
25 |
+
|
26 |
+
model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py"
|
27 |
+
|
28 |
+
try:
|
29 |
+
predictions = run_prediction(temp_csv, model_path, output_path=out_csv)
|
30 |
+
return predictions
|
31 |
+
except subprocess.CalledProcessError as e:
|
32 |
+
return f"Error: {str(e)}"
|
33 |
+
|
34 |
+
def predict_from_file(file_obj, model_choice, dataset_choice):
|
35 |
+
temp_id = uuid.uuid4().hex
|
36 |
+
file_path = f"data/uploaded_{temp_id}.csv"
|
37 |
+
out_csv = f"data/output_file_{temp_id}.csv"
|
38 |
+
|
39 |
+
with open(file_path, "wb") as f:
|
40 |
+
f.write(file_obj.read())
|
41 |
+
|
42 |
+
model_path = "chemprop_mod/predict.py" if model_choice == "Fusion (GNN + Transformer)" else "chemprop/predict.py"
|
43 |
+
|
44 |
+
try:
|
45 |
+
predictions = run_prediction(file_path, model_path, output_path=out_csv)
|
46 |
+
return predictions
|
47 |
+
except subprocess.CalledProcessError as e:
|
48 |
+
return f"Error: {str(e)}"
|
49 |
+
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("## 🧪 Drug Property Prediction with Fusion Models")
|
52 |
+
gr.Markdown("Choose prediction input type and compare Chemprop vs Fusion model")
|
53 |
+
|
54 |
+
with gr.Tab("Single SMILES"):
|
55 |
+
with gr.Row():
|
56 |
+
smiles_input = gr.Textbox(label="Enter SMILES string")
|
57 |
+
model_select = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model")
|
58 |
+
dataset_select = gr.Dropdown(["BBBP", "BACE"], label="Dataset")
|
59 |
+
predict_button = gr.Button("Predict")
|
60 |
+
result_output = gr.Dataframe(label="Prediction Result")
|
61 |
+
predict_button.click(fn=predict_from_smiles, inputs=[smiles_input, model_select, dataset_select], outputs=result_output)
|
62 |
+
|
63 |
+
with gr.Tab("Upload File"):
|
64 |
+
with gr.Row():
|
65 |
+
file_input = gr.File(label="Upload CSV File")
|
66 |
+
model_select_file = gr.Radio(["Vanilla Chemprop", "Fusion (GNN + Transformer)"], label="Model")
|
67 |
+
dataset_select_file = gr.Dropdown(["BBBP", "BACE"], label="Dataset")
|
68 |
+
predict_button_file = gr.Button("Predict")
|
69 |
+
result_output_file = gr.Dataframe(label="Prediction Result")
|
70 |
+
predict_button_file.click(fn=predict_from_file, inputs=[file_input, model_select_file, dataset_select_file], outputs=result_output_file)
|
71 |
+
|
72 |
+
demo.launch()
|