Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Step 1: Load pre-trained model and tokenizer | |
MODEL_NAME = "deepseek-ai/DeepSeek-V3-0324" # Pre-trained model from Hugging Face | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
# Step 2: Load your custom dataset from Hugging Face | |
dataset = load_dataset("epicDev123/deepseek") # Replace with your dataset name if different | |
# Step 3: Tokenization function (tokenize the text data for model input) | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True) | |
# Tokenize the dataset | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Step 4: Set up training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", # Output directory to save the fine-tuned model | |
num_train_epochs=3, # Number of training epochs | |
per_device_train_batch_size=8, # Batch size for training | |
per_device_eval_batch_size=8, # Batch size for evaluation | |
warmup_steps=500, # Number of warmup steps | |
weight_decay=0.01, # Weight decay for regularization | |
logging_dir="./logs", # Directory for logs | |
logging_steps=10, # Log training every 10 steps | |
save_steps=500, # Save model checkpoints every 500 steps | |
evaluation_strategy="epoch", # Evaluate model after each epoch | |
save_total_limit=2, # Limit the number of saved checkpoints | |
) | |
# Step 5: Initialize the Trainer | |
trainer = Trainer( | |
model=model, # Model to train | |
args=training_args, # Training arguments | |
train_dataset=tokenized_datasets["train"], # Training dataset | |
eval_dataset=tokenized_datasets["validation"], # Validation dataset (optional) | |
) | |
# Step 6: Fine-tune the model | |
trainer.train() | |
# Step 7: Save the fine-tuned model | |
model.save_pretrained("./fine_tuned_deepseek") # Save the model to a directory | |
tokenizer.save_pretrained("./fine_tuned_deepseek") # Save the tokenizer | |
# Step 8: Optionally, you can push the model to Hugging Face Model Hub (after logging into Hugging Face) | |
model.push_to_hub("your-username/fine-tuned-deepseek") # Replace with your username and desired model name | |
tokenizer.push_to_hub("your-username/fine-tuned-deepseek") | |
print("Fine-tuning complete! Your model has been saved.") | |