Spaces:
Runtime error
Runtime error
File size: 2,592 Bytes
6ab94fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Import necessary libraries
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Step 1: Load pre-trained model and tokenizer
MODEL_NAME = "deepseek-ai/DeepSeek-V3-0324" # Pre-trained model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
# Step 2: Load your custom dataset from Hugging Face
dataset = load_dataset("epicDev123/deepseek") # Replace with your dataset name if different
# Step 3: Tokenization function (tokenize the text data for model input)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
# Tokenize the dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Step 4: Set up training arguments
training_args = TrainingArguments(
output_dir="./results", # Output directory to save the fine-tuned model
num_train_epochs=3, # Number of training epochs
per_device_train_batch_size=8, # Batch size for training
per_device_eval_batch_size=8, # Batch size for evaluation
warmup_steps=500, # Number of warmup steps
weight_decay=0.01, # Weight decay for regularization
logging_dir="./logs", # Directory for logs
logging_steps=10, # Log training every 10 steps
save_steps=500, # Save model checkpoints every 500 steps
evaluation_strategy="epoch", # Evaluate model after each epoch
save_total_limit=2, # Limit the number of saved checkpoints
)
# Step 5: Initialize the Trainer
trainer = Trainer(
model=model, # Model to train
args=training_args, # Training arguments
train_dataset=tokenized_datasets["train"], # Training dataset
eval_dataset=tokenized_datasets["validation"], # Validation dataset (optional)
)
# Step 6: Fine-tune the model
trainer.train()
# Step 7: Save the fine-tuned model
model.save_pretrained("./fine_tuned_deepseek") # Save the model to a directory
tokenizer.save_pretrained("./fine_tuned_deepseek") # Save the tokenizer
# Step 8: Optionally, you can push the model to Hugging Face Model Hub (after logging into Hugging Face)
model.push_to_hub("your-username/fine-tuned-deepseek") # Replace with your username and desired model name
tokenizer.push_to_hub("your-username/fine-tuned-deepseek")
print("Fine-tuning complete! Your model has been saved.")
|