# Import necessary libraries from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments from datasets import load_dataset # Step 1: Load pre-trained model and tokenizer MODEL_NAME = "deepseek-ai/DeepSeek-V3-0324" # Pre-trained model from Hugging Face tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Step 2: Load your custom dataset from Hugging Face dataset = load_dataset("epicDev123/deepseek") # Replace with your dataset name if different # Step 3: Tokenization function (tokenize the text data for model input) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) # Tokenize the dataset tokenized_datasets = dataset.map(tokenize_function, batched=True) # Step 4: Set up training arguments training_args = TrainingArguments( output_dir="./results", # Output directory to save the fine-tuned model num_train_epochs=3, # Number of training epochs per_device_train_batch_size=8, # Batch size for training per_device_eval_batch_size=8, # Batch size for evaluation warmup_steps=500, # Number of warmup steps weight_decay=0.01, # Weight decay for regularization logging_dir="./logs", # Directory for logs logging_steps=10, # Log training every 10 steps save_steps=500, # Save model checkpoints every 500 steps evaluation_strategy="epoch", # Evaluate model after each epoch save_total_limit=2, # Limit the number of saved checkpoints ) # Step 5: Initialize the Trainer trainer = Trainer( model=model, # Model to train args=training_args, # Training arguments train_dataset=tokenized_datasets["train"], # Training dataset eval_dataset=tokenized_datasets["validation"], # Validation dataset (optional) ) # Step 6: Fine-tune the model trainer.train() # Step 7: Save the fine-tuned model model.save_pretrained("./fine_tuned_deepseek") # Save the model to a directory tokenizer.save_pretrained("./fine_tuned_deepseek") # Save the tokenizer # Step 8: Optionally, you can push the model to Hugging Face Model Hub (after logging into Hugging Face) model.push_to_hub("your-username/fine-tuned-deepseek") # Replace with your username and desired model name tokenizer.push_to_hub("your-username/fine-tuned-deepseek") print("Fine-tuning complete! Your model has been saved.")