File size: 8,631 Bytes
a4ff801 006654f 1c3741b d5e08e5 62b94ab 3b9fb6c d5e08e5 dc1be42 1c3741b d5e08e5 85c9131 045a158 e27afc9 d532f55 e673cff 6db0306 798fe4e 371b679 b983e5a 371b679 045a158 e673cff 371b679 bf4be28 e673cff 431e117 371b679 431e117 371b679 a0ed7fc 371b679 d532f55 371b679 18805a2 371b679 b4a960f 371b679 431e117 371b679 18805a2 371b679 d5e08e5 371b679 d5e08e5 723846d d5e08e5 3b9fb6c e08d62f bf4be28 acb1fff e08d62f acb1fff e08d62f acb1fff e08d62f acb1fff e08d62f 3b9fb6c b11d95b cd329de bf4be28 b11d95b cd329de b11d95b cd329de b11d95b cd329de b11d95b cd329de bf4be28 3b9fb6c d5e08e5 630480e 371b679 d532f55 006654f d5e08e5 3b9fb6c d5e08e5 b2ebf6f f5c290b 62b94ab 3b9fb6c d532f55 a4ff801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import streamlit as st
import pandas as pd
import transformers
import re
import zipfile
import postt
from postt import postcor
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
st.header("Knowledge extraction on Endocrine disruptors")
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
form = st.form(key='my-form')
x = form.text_area('Enter text', height=250)
submit = form.form_submit_button('Submit')
if submit and len(x) != 0:
#model.to("cpu")
st.write("Execution in progress ... It may take a while, please be patient.")
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
if x[-1] not in ".?:":
x += "."
biotext = x
#split document or text into sentences
lstbiotext = []
flag = 0
tempsen = ""
for e in biotext:
tempsen += e
if e=="(":
flag = 1
if e==")":
flag = 0
if (e =="." or e =="?" or e ==":" ) and flag == 0 :
lstbiotext += [tempsen.strip()]
tempsen = ""
ddata = lstbiotext
#tokenized_dat = tokenize_function(ddata)
az = token_classifier(ddata)
#code to convert NER output to RE input compatible format
#tg_inorder are decoding of labels on which the model was fine tuned on
tg_inorder = ['O',
'B-HORMONE',
'B-EXP_PER',
'I-HORMONE',
'I-CANCER',
'I-EDC',
'B-RECEPTOR',
'B-CANCER',
'I-RECEPTOR',
'B-EDC',
'PAD']
lstSentEnc = []
lstSentbilbl = []
lstSentEnt = []
for itsent in az:
sentaz = itsent
ph = []
phl = []
for e in sentaz:
if e["word"][0]=="#" and len(ph)!=0:
ph[-1]+= e["word"][2:]
else:
ph += [e["word"]]
phl += [e["entity"]]
phltr = []
for e in phl:
phltr += [tg_inorder[int(e[-1])] if len(e)==7 else tg_inorder[int(e[-2:])]]
nwph = []
nwphltr = []
flag = 0
for i in range(len(phltr)-2):
if phltr[i]=="O" and flag != 3 :
nwph += [ph[i]]
nwphltr += [phltr[i]]
continue
elif flag == 3:
nwph[-1] += " "+ph[i]
flag = 1
continue
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 0:
nwph += [ph[i]]
nwphltr += [phltr[i]]
flag = 1
continue
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 1:
nwph[-1] += " "+ph[i]
continue
# xox with flag == 3
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 0:
nwph += [ph[i]]
nwphltr += [phltr[i]]
flag = 3
continue
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 1:
nwph[-1] += " "+ph[i]
flag = 3
continue
#\ xox
elif flag == 1:
nwph[-1] += " "+ph[i]
flag = 0
continue
else :
nwph += [ph[i]]
nwphltr += [phltr[i]]
continue
# nwph,nwphltr,len(nwph),len(nwphltr)
if nwphltr.count("O") <= len(nwphltr)-2:
for i in range(len(nwph)-1):
if nwphltr[i] != "O":
for j in range(i,len(nwph)):
if nwphltr[j] != "O" and nwphltr[j] != nwphltr[i] and {nwphltr[j], nwphltr[i]} != {"B-CANCER","B-RECEPTOR"}:
sen2ad = ""
for g in range(i):
sen2ad += nwph[g]+" "
sen2ad += "<e1>"+nwph[i]+"</e1> "
for t in range(i+1,j):
sen2ad += nwph[t]+" "
sen2ad += "<e2>"+nwph[j]+"</e2>"
if j<len(nwph):
for l in range(j+1,len(nwph)):
sen2ad += " "+nwph[l]
lstSentEnc += [sen2ad]
lstSentbilbl += [[nwphltr[i],nwphltr[j]]]
lstSentEnt += [[nwph[i],nwph[j]]]
#lstSentEnc,lstSentEnt,lstSentbilbl
st.text("Entities detected.")
st.text("")
st.text("Next: Relation detection ...")
# Relation extraction part
token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
rrdata = lstSentEnc
outre = token_classifier(rrdata)
trLABELS = ['INCREASE_RISK(e1,e2)',
'SPEED_UP(e2,e1)',
'DECREASE_ACTIVITY(e1,e2)',
'NO_ASSOCIATION(e1,e2)',
'DECREASE(e1,e2)',
'BLOCK(e1,e2)',
'CAUSE(e1,e2)',
'ACTIVATE(e2,e1)',
'DEVELOP(e2,e1)',
'ALTER(e1,e2)',
'INCREASE_RISK(e2,e1)',
'SPEED_UP(e1,e2)',
'INTERFER(e1,e2)',
'DECREASE(e2,e1)',
'NO_ASSOCIATION(e2,e1)',
'INCREASE(e2,e1)',
'INTERFER(e2,e1)',
'ACTIVATE(e1,e2)',
'INCREASE(e1,e2)',
'MIMIC(e1,e2)',
'MIMIC(e2,e1)',
'BLOCK(e2,e1)',
'other',
'BIND(e2,e1)',
'INCREASE_ACTIVITY(e2,e1)',
'ALTER(e2,e1)',
'CAUSE(e2,e1)',
'BIND(e1,e2)',
'DEVELOP(e1,e2)',
'DECREASE_ACTIVITY(e2,e1)']
outrelbl = []
for e in outre:
outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]
for i in range(len(outrelbl)):
if "(e2,e1)" in outrelbl[i]:
lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]
edccan = []
edccanbis = []
for i in range(len(outrelbl)):
if outrelbl[i] != "other":
edccanbis += [[lstSentEnt[i][0], lstSentEnt[i][1], outrelbl[i][:-7], lstSentEnc[i], lstSentbilbl[i]]]
#edccan += [[lstSentEnc[i],lstSentEnt[i][0]+" ["+lstSentbilbl[i][0][2:]+"]", lstSentEnt[i][1]+" ["+lstSentbilbl[i][1][2:]+"]",outrelbl[i][:-7]]]
edccanbis = postcor(edccanbis)
edccann = []
edchorm = []
edcrecep = []
hormrecep = []
hormcan = []
for e in edccanbis:
if e[-1]== ["B-EDC","B-CANCER"]:
edccann += [[e[0],e[1],e[2]]]
st.write("am in edcann")
elif e[-1]== ["B-EDC","B-HORMONE"]:
edchorm += [[e[0],e[1],e[2]]]
elif e[-1]== ["B-EDC","B-RECEPTOR"]:
edcrecep += [[e[0],e[1],e[2]]]
elif e[-1]== ["B-HORMONE","B-RECEPTOR"]:
hormrecep += [[e[0],e[1],e[2]]]
elif e[-1]== ["B-HORMONE","B-CANCER"]:
hormcan += [[e[0],e[1],e[2]]]
edcrecepdf = pd.DataFrame(edcrecep, columns=["EDC", "RECEPTOR", "RELATION"])
edccanndf = pd.DataFrame(edccann, columns= ["EDC", "CANCER", "RELATION"] )
edchormdf = pd.DataFrame(edchorm , columns = ["EDC", "HORMONE", "RELATION"])
hormrecepdf = pd.DataFrame(hormrecep, columns = ["HORMONE", "RECEPTOR", "RELATION"])
hormcandf = pd.DataFrame(hormcan, columns = ["HORMONE", "CANCER", "RELATION"])
edccancsv = edccanndf.to_csv('edccan.csv')
edcrecepcsv = edcrecepdf.to_csv('edcrecep.csv')
edchormcsv = edchormdf.to_csv('edchorm.csv')
hormcancsv = hormcandf.to_csv('hormcan.csv')
hormrecepcsv = hormrecepdf.to_csv('hormrecep.csv')
with zipfile.ZipFile("allcsvs.zip", "w") as zipf:
if len(edccann)!=0:
zipf.write(edccancsv)
st.write("am in zip")
if len(edcrecep)!=0:
zipf.write(edcrecepcsv)
if len(edchorm)!=0:
zipf.write(edchormcsv)
if len(hormcan)!=0:
zipf.write(hormcancsv)
if len(hormrecep)!=0:
zipf.write(hormrecepcsv)
zipf.close()
for e in edccanbis:
edccan += [[e[3],e[0]+" ["+e[-1][0][2:]+"]", e[1]+" ["+e[-1][1][2:]+"]",e[2]]]
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
st.table(edccandf)
csv = edccandf.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download all data as CSV",
data=csv,
file_name='Relation_triples.csv',
mime='text/csv',
)
with open("allcsvs.zip", "rb") as fp:
btn = st.download_button(
label="Download ZIP",
data=fp,
file_name="SeperateCsvs.zip",
mime="application/zip"
)
|