Update app.py
Browse files
app.py
CHANGED
@@ -15,20 +15,7 @@ st.write("This tool lets you extract relation triples concerning interactions be
|
|
15 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
16 |
|
17 |
|
18 |
-
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
|
19 |
-
def load_tokenizer():
|
20 |
-
return AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
|
21 |
-
|
22 |
-
tokenizer = load_tokenizer()
|
23 |
|
24 |
-
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
|
25 |
-
def load_modelNER(tokenizer):
|
26 |
-
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
|
27 |
-
return pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
|
28 |
-
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
|
29 |
-
def load_modelRE(tokenizer):
|
30 |
-
model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
|
31 |
-
return pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
|
32 |
|
33 |
form = st.form(key='my-form')
|
34 |
x = form.text_area('Enter text', height=250)
|
@@ -42,10 +29,11 @@ if submit and len(x) != 0:
|
|
42 |
#model.to("cpu")
|
43 |
st.text("Execution is in progress ...")
|
44 |
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
|
51 |
|
@@ -190,7 +178,7 @@ if submit and len(x) != 0:
|
|
190 |
|
191 |
# Relation extraction part
|
192 |
|
193 |
-
|
194 |
|
195 |
rrdata = lstSentEnc
|
196 |
|
|
|
15 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
form = st.form(key='my-form')
|
21 |
x = form.text_area('Enter text', height=250)
|
|
|
29 |
#model.to("cpu")
|
30 |
st.text("Execution is in progress ...")
|
31 |
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
|
33 |
+
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
|
34 |
+
model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
|
35 |
|
36 |
+
token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
|
37 |
|
38 |
|
39 |
|
|
|
178 |
|
179 |
# Relation extraction part
|
180 |
|
181 |
+
token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
|
182 |
|
183 |
rrdata = lstSentEnc
|
184 |
|