dexay commited on
Commit
431e117
·
1 Parent(s): 1531882

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -17
app.py CHANGED
@@ -15,20 +15,7 @@ st.write("This tool lets you extract relation triples concerning interactions be
15
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
16
 
17
 
18
- @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
19
- def load_tokenizer():
20
- return AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
21
-
22
- tokenizer = load_tokenizer()
23
 
24
- @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
25
- def load_modelNER(tokenizer):
26
- model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
27
- return pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
28
- @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None})
29
- def load_modelRE(tokenizer):
30
- model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
31
- return pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
32
 
33
  form = st.form(key='my-form')
34
  x = form.text_area('Enter text', height=250)
@@ -42,10 +29,11 @@ if submit and len(x) != 0:
42
  #model.to("cpu")
43
  st.text("Execution is in progress ...")
44
 
45
-
46
-
 
47
 
48
- #token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
49
 
50
 
51
 
@@ -190,7 +178,7 @@ if submit and len(x) != 0:
190
 
191
  # Relation extraction part
192
 
193
- #token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
194
 
195
  rrdata = lstSentEnc
196
 
 
15
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
16
 
17
 
 
 
 
 
 
18
 
 
 
 
 
 
 
 
 
19
 
20
  form = st.form(key='my-form')
21
  x = form.text_area('Enter text', height=250)
 
29
  #model.to("cpu")
30
  st.text("Execution is in progress ...")
31
 
32
+ tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
33
+ model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
34
+ model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
35
 
36
+ token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
37
 
38
 
39
 
 
178
 
179
  # Relation extraction part
180
 
181
+ token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re, )
182
 
183
  rrdata = lstSentEnc
184