Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import transformers
|
4 |
import re
|
|
|
5 |
import postt
|
6 |
from postt import postcor
|
7 |
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
|
@@ -241,6 +242,45 @@ if submit and len(x) != 0:
|
|
241 |
edccanbis = postcor(edccanbis)
|
242 |
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
for e in edccanbis:
|
245 |
edccan += [[e[3],e[0]+" ["+e[-1][0][2:]+"]", e[1]+" ["+e[-1][1][2:]+"]",e[2]]]
|
246 |
|
@@ -250,11 +290,18 @@ if submit and len(x) != 0:
|
|
250 |
st.table(edccandf)
|
251 |
csv = edccandf.to_csv(index=False).encode('utf-8')
|
252 |
st.download_button(
|
253 |
-
label="Download data as CSV",
|
254 |
data=csv,
|
255 |
file_name='Relation_triples.csv',
|
256 |
mime='text/csv',
|
257 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
|
260 |
|
|
|
2 |
import pandas as pd
|
3 |
import transformers
|
4 |
import re
|
5 |
+
import zipfile
|
6 |
import postt
|
7 |
from postt import postcor
|
8 |
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
|
|
|
242 |
edccanbis = postcor(edccanbis)
|
243 |
|
244 |
|
245 |
+
|
246 |
+
edccann = []
|
247 |
+
edchorm = []
|
248 |
+
edcrecep = []
|
249 |
+
hormrecep = []
|
250 |
+
hormcan = []
|
251 |
+
|
252 |
+
for e in edccanbis:
|
253 |
+
if e[-1]== ["B-EDC","B-CANCER"]:
|
254 |
+
edccann += [[e[0],e[1],e[2]]
|
255 |
+
elif e[-1]== ["B-EDC","B-HORMONE"]:
|
256 |
+
edchorm += [[e[0],e[1],e[2]]
|
257 |
+
elif e[-1]== ["B-EDC","B-RECEPTOR"]:
|
258 |
+
edcrecep += [[e[0],e[1],e[2]]
|
259 |
+
elif e[-1]== ["B-HORMONE","B-RECEPTOR"]:
|
260 |
+
hormrecep += [[e[0],e[1],e[2]]
|
261 |
+
elif e[-1]== ["B-HORMONE","B-CANCER"]:
|
262 |
+
hormcan += [[e[0],e[1],e[2]]
|
263 |
+
|
264 |
+
|
265 |
+
edcrecepdf = pd.DataFrame(edcrecep, columns=["EDC", "RECEPTOR", "RELATION"])
|
266 |
+
edccanndf = pd.DataFrame(edccann, columns= ["EDC", "CANCER", "RELATION"] )
|
267 |
+
edchormdf = pd.DataFrame(edchorm , columns = ["EDC", "HORMONE", "RELATION"])
|
268 |
+
hormrecepdf = pd.DataFrame(hormrecep, columns = ["HORMONE", "RECEPTOR", "RELATION"])
|
269 |
+
hormcandf = pd.DataFrame(hormcan, columns = ["HORMONE", "CANCER", "RELATION"])
|
270 |
+
|
271 |
+
edccancsv = edccanndf.to_csv('edccan.csv')
|
272 |
+
edcrecepcsv = edcrecepdf.to_csv('edcrecep.csv')
|
273 |
+
edchormcsv = edchormdf.to_csv('edchorm.csv')
|
274 |
+
hormcancsv = hormcandf.to_csv('hormcan.csv')
|
275 |
+
hormrecepcsv = hormrecepdf.to_csv('hormrecep.csv')
|
276 |
+
|
277 |
+
with zipfile.ZipFile("allcsvs.zip", "w") as zipf:
|
278 |
+
zipf.write(edccancsv)
|
279 |
+
zipf.write(edcrecepcsv)
|
280 |
+
zipf.write(edchormcsv)
|
281 |
+
zipf.write(hormcancsv)
|
282 |
+
zipf.write(hormrecepcsv)
|
283 |
+
|
284 |
for e in edccanbis:
|
285 |
edccan += [[e[3],e[0]+" ["+e[-1][0][2:]+"]", e[1]+" ["+e[-1][1][2:]+"]",e[2]]]
|
286 |
|
|
|
290 |
st.table(edccandf)
|
291 |
csv = edccandf.to_csv(index=False).encode('utf-8')
|
292 |
st.download_button(
|
293 |
+
label="Download all data as CSV",
|
294 |
data=csv,
|
295 |
file_name='Relation_triples.csv',
|
296 |
mime='text/csv',
|
297 |
)
|
298 |
+
st.download_button(
|
299 |
+
"Download in different CSVs",
|
300 |
+
zipf,
|
301 |
+
file_name='TriplesCSVs.zip',
|
302 |
+
|
303 |
+
)
|
304 |
+
|
305 |
|
306 |
|
307 |
|