File size: 9,189 Bytes
02e476c
2997c9b
 
 
02e476c
e26b1a8
2997c9b
 
 
 
 
 
 
 
02e476c
2997c9b
 
 
 
 
 
 
 
02e476c
2997c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e26b1a8
 
 
 
2997c9b
 
 
41a2f73
 
2997c9b
41a2f73
2997c9b
41a2f73
 
 
 
e26b1a8
2997c9b
 
41a2f73
 
2997c9b
41a2f73
2997c9b
41a2f73
 
 
 
e26b1a8
2997c9b
 
e26b1a8
 
 
41a2f73
e26b1a8
41a2f73
e26b1a8
 
41a2f73
 
 
 
 
 
 
2997c9b
41a2f73
 
e26b1a8
 
2997c9b
 
41a2f73
 
2997c9b
41a2f73
e26b1a8
41a2f73
 
 
e26b1a8
 
 
 
 
41a2f73
e26b1a8
 
 
 
41a2f73
e26b1a8
 
 
 
 
 
 
 
 
 
41a2f73
e26b1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a2f73
e26b1a8
 
 
 
 
2997c9b
 
41a2f73
 
2997c9b
41a2f73
 
 
2997c9b
 
e26b1a8
41a2f73
 
 
 
 
e26b1a8
41a2f73
 
 
 
e26b1a8
 
 
 
 
 
 
 
 
 
41a2f73
e26b1a8
 
 
 
 
 
 
2997c9b
41a2f73
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px

# Pricing data
aws_instances = {
    "g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
    "g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
    "g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB"},
    "g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB"},
    "p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB"},
    "p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
}

gcp_instances = {
    "a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
    "a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
    "a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB"},
    "n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB"},
    "n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB"},
    "g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
}

api_pricing = {
    "OpenAI": {
        "GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
        "GPT-4o": {"input_per_1M": 5.0, "output_per_1M": 15.0, "token_context": 32768},
        "GPT-4o-mini": {"input_per_1M": 2.5, "output_per_1M": 7.5, "token_context": 32768},
    },
    "TogetherAI": {
        "Llama-3-8B": {"input_per_1M": 0.15, "output_per_1M": 0.15, "token_context": 8192},
        "Llama-3-70B": {"input_per_1M": 0.9, "output_per_1M": 0.9, "token_context": 8192},
        "Llama-2-13B": {"input_per_1M": 0.6, "output_per_1M": 0.6, "token_context": 4096},
        "Llama-2-70B": {"input_per_1M": 2.5, "output_per_1M": 2.5, "token_context": 4096},
        "DeepSeek-Coder-33B": {"input_per_1M": 2.0, "output_per_1M": 2.0, "token_context": 16384},
    },
    "Anthropic": {
        "Claude-3-Opus": {"input_per_1M": 15.0, "output_per_1M": 75.0, "token_context": 200000},
        "Claude-3-Sonnet": {"input_per_1M": 3.0, "output_per_1M": 15.0, "token_context": 200000},
        "Claude-3-Haiku": {"input_per_1M": 0.25, "output_per_1M": 1.25, "token_context": 200000},
    }
}

model_sizes = {
    "Small (7B parameters)": {"memory_required": 14},
    "Medium (13B parameters)": {"memory_required": 26},
    "Large (70B parameters)": {"memory_required": 140},
    "XL (180B parameters)": {"memory_required": 360},
}

def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
    data = aws_instances[instance]
    rate = data['hourly_rate']
    if spot:
        rate *= 0.3
    elif reserved:
        factors = {1: 0.6, 3: 0.4}
        rate *= factors.get(years, 0.6)
    compute = rate * hours
    storage_cost = storage * 0.10
    return {'total_cost': compute + storage_cost}

def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
    data = gcp_instances[instance]
    rate = data['hourly_rate']
    if spot:
        rate *= 0.2
    elif reserved:
        factors = {1: 0.7, 3: 0.5}
        rate *= factors.get(years, 0.7)
    compute = rate * hours
    storage_cost = storage * 0.04
    return {'total_cost': compute + storage_cost}

def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
    m = api_pricing[provider][model]
    input_cost = input_tokens * m['input_per_1M']
    output_cost = output_tokens * m['output_per_1M']
    call_cost = api_calls * 0.0001 if provider == 'TogetherAI' else 0
    return {'total_cost': input_cost + output_cost + call_cost}

def filter_compatible(instances, min_mem):
    res = {}
    for name, data in instances.items():
        mem_str = data['gpu_memory']
        if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
            val = int(mem_str.replace('GB',''))
        elif 'x' in mem_str:
            parts = mem_str.split('x')
            val = int(parts[0]) * int(parts[1].replace('GB',''))
        else:
            val = int(mem_str.replace('GB',''))
        if val >= min_mem:
            res[name] = data
    return res

def generate_cost_comparison(
    compute_hours, tokens_per_month, input_ratio, api_calls,
    model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
):
    years = int(multi_year_commitment)
    in_tokens = tokens_per_month * (input_ratio / 100)
    out_tokens = tokens_per_month - in_tokens
    min_mem = model_sizes[model_size]['memory_required']

    aws_comp = filter_compatible(aws_instances, min_mem)
    gcp_comp = filter_compatible(gcp_instances, min_mem)

    results = []
    # AWS
    if aws_comp:
        best_aws = min(aws_comp.keys(), key=lambda x: calculate_aws_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
        best_aws_cost = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
        results.append({'provider': f'AWS ({best_aws})', 'cost': best_aws_cost, 'type': 'Cloud'})
    # GCP
    if gcp_comp:
        best_gcp = min(gcp_comp.keys(), key=lambda x: calculate_gcp_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
        best_gcp_cost = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
        results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type': 'Cloud'})
    # API (TogetherAI only)
    api_opts = { (prov, m): calculate_api_cost(prov, m, in_tokens, out_tokens, api_calls)['total_cost']
                 for prov in api_pricing for m in api_pricing[prov] }
    best_api = min(api_opts, key=api_opts.get)
    results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_opts[best_api], 'type': 'API'})

    # Build bar chart
    df_res = pd.DataFrame(results)
    aws_name = df_res[df_res['type']=='Cloud']['provider'].iloc[0]
    gcp_name = df_res[df_res['type']=='Cloud']['provider'].iloc[1]
    api_name = df_res[df_res['type']=='API']['provider'].iloc[0]

    fig = px.bar(
        df_res, x='provider', y='cost', color='provider',
        color_discrete_map={
            aws_name: '#FF9900',  # AWS orange
            gcp_name: '#4285F4',  # GCP blue
            api_name: '#D62828'   # TogetherAI red
        },
        title='Monthly Cost Comparison',
        labels={'provider': 'Provider', 'cost': 'Monthly Cost'}
    )
    fig.update_yaxes(tickprefix='$')
    fig.update_layout(showlegend=False, height=500)

    # HTML summary tables omitted for brevity
    html_tables = '<div>'
    # ... you can reinsert your HTML tables here if needed
    html_tables += '</div>'
    return html_tables, fig

def app_function(
    compute_hours, tokens_per_month, input_ratio, api_calls,
    model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
):
    return generate_cost_comparison(
        compute_hours, tokens_per_month, input_ratio, api_calls,
        model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
    )

# Gradio UI
def main():
    with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
        gr.HTML("""
        <div style="text-align:center; margin-bottom:20px;">
            <h1>Cloud Cost Estimator</h1>
            <p>Compare cloud vs API costs</p>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                compute_hours = gr.Slider("Compute Hours per Month", 1, 730, 100)
                tokens_per_month = gr.Slider("Tokens per Month (M)", 1, 1000, 10)
                input_ratio = gr.Slider("Input Ratio (%)", 10, 90, 30)
                api_calls = gr.Slider("API Calls per Month", 100, 1_000_000, 10000, step=100)
                model_size = gr.Dropdown(list(model_sizes.keys()), value="Medium (13B parameters)")
                storage_gb = gr.Slider("Storage (GB)", 10, 1000, 100)
                reserved_instances = gr.Checkbox("Reserved Instances", value=False)
                spot_instances = gr.Checkbox("Spot Instances", value=False)
                multi_year_commitment = gr.Radio(["1","3"], value="1")
                submit = gr.Button("Calculate Costs")
            with gr.Column(scale=2):
                out_html = gr.HTML()
                out_plot = gr.Plot()
        submit.click(app_function,
                     inputs=[compute_hours, tokens_per_month, input_ratio, api_calls,
                             model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment],
                     outputs=[out_html, out_plot])
        demo.launch()

if __name__ == "__main__":
    main()