Spaces:
Running
Running
# β SmartManuals-AI App for Hugging Face Spaces | |
# Full app.py with spaCy-based sentence segmentation and model dropdown selection | |
import os | |
import json | |
import fitz # PyMuPDF | |
import chromadb | |
import torch | |
import docx | |
import gradio as gr | |
import pytesseract | |
import numpy as np | |
import spacy | |
from tqdm import tqdm | |
from PIL import Image | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer, util | |
# --------------------------- | |
# βοΈ Configuration | |
# --------------------------- | |
MANUALS_DIR = "./Manuals" | |
CHROMA_PATH = "./chroma_store" | |
CHROMA_COLLECTION = "manual_chunks" | |
CHUNK_SIZE = 750 | |
CHUNK_OVERLAP = 100 | |
EMBED_MODEL = "all-MiniLM-L6-v2" | |
DEFAULT_MODEL = "meta-llama/Llama-3-8B-Instruct" | |
AVAILABLE_MODELS = [ | |
"meta-llama/Llama-3-8B-Instruct", | |
"meta-llama/Llama-4-Scout-17B-16E-Instruct", | |
"google/gemma-1.1-7b-it", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"Qwen/Qwen1.5-7B-Chat" | |
] | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# --------------------------- | |
# π Load NLP model for sentence splitting | |
# --------------------------- | |
try: | |
import spacy | |
nlp = spacy.load("en_core_web_sm") | |
except: | |
os.system("python -m spacy download en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
def split_sentences(text): | |
return [sent.text.strip() for sent in nlp(text).sents if sent.text.strip()] | |
# --------------------------- | |
# π§Ή Text cleanup | |
# --------------------------- | |
def clean(text): | |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()]) | |
# --------------------------- | |
# π PDF and DOCX extractors | |
# --------------------------- | |
def extract_pdf_text(path): | |
doc = fitz.open(path) | |
pages = [] | |
for i, page in enumerate(doc): | |
text = page.get_text() | |
if not text.strip(): | |
pix = page.get_pixmap(dpi=300) | |
img = Image.open(io.BytesIO(pix.tobytes("png"))) | |
text = pytesseract.image_to_string(img) | |
pages.append((i + 1, text)) | |
return pages | |
def extract_docx_text(path): | |
doc = docx.Document(path) | |
full_text = "\n".join([para.text for para in doc.paragraphs if para.text.strip()]) | |
return [(1, full_text)] | |
# --------------------------- | |
# π¦ Chunk splitter | |
# --------------------------- | |
def chunkify(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP): | |
chunks = [] | |
current = [] | |
length = 0 | |
for s in sentences: | |
tokens = len(s.split()) | |
if length + tokens > max_tokens: | |
chunks.append(" ".join(current)) | |
current = current[-overlap:] | |
length = sum(len(w.split()) for w in current) | |
current.append(s) | |
length += tokens | |
if current: | |
chunks.append(" ".join(current)) | |
return chunks | |
# --------------------------- | |
# π Metadata from file | |
# --------------------------- | |
def extract_meta(name): | |
name = name.lower() | |
return { | |
"model": next((m for m in ["se3", "se4", "symbio", "explore"] if m in name), "unknown"), | |
"doc_type": next((d for d in ["owner", "service", "parts"] if d in name), "unknown"), | |
"brand": "life fitness" | |
} | |
# --------------------------- | |
# π Embed and store chunks | |
# --------------------------- | |
def embed_all(): | |
embedder = SentenceTransformer(EMBED_MODEL) | |
client = chromadb.PersistentClient(path=CHROMA_PATH) | |
try: | |
client.delete_collection(CHROMA_COLLECTION) | |
except: | |
pass | |
db = client.create_collection(CHROMA_COLLECTION) | |
for fname in os.listdir(MANUALS_DIR): | |
path = os.path.join(MANUALS_DIR, fname) | |
if fname.endswith(".pdf"): | |
pages = extract_pdf_text(path) | |
elif fname.endswith(".docx"): | |
pages = extract_docx_text(path) | |
else: | |
continue | |
meta = extract_meta(fname) | |
for page, text in pages: | |
sents = split_sentences(clean(text)) | |
chunks = chunkify(sents) | |
for i, chunk in enumerate(chunks): | |
db.add( | |
ids=[f"{fname}::p{page}::c{i}"], | |
documents=[chunk], | |
metadatas=[{**meta, "source": fname, "page": page}] | |
) | |
return db, embedder | |
# --------------------------- | |
# π€ Load selected LLM model | |
# --------------------------- | |
def load_model(repo): | |
tokenizer = AutoTokenizer.from_pretrained(repo, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained( | |
repo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" if torch.cuda.is_available() else None, token=HF_TOKEN | |
) | |
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
# --------------------------- | |
# π₯ Retrieval-Augmented QA | |
# --------------------------- | |
def answer_query(q, model_choice): | |
results = db.query(query_texts=[q], n_results=3) | |
context = "\n\n".join(results["documents"][0]) | |
prompt = f""" | |
You are a helpful assistant. Answer based on the context. If unsure, say "I don't know". | |
Context: | |
{context} | |
Question: {q} | |
Answer: | |
""" | |
pipe = load_model(model_choice) | |
out = pipe(prompt, max_new_tokens=300, do_sample=False)[0]["generated_text"] | |
return out.split("Answer:")[-1].strip() | |
# --------------------------- | |
# π Initialize app | |
# --------------------------- | |
print("Embedding documents...") | |
db, embedder = embed_all() | |
print("Done embedding.") | |
# --------------------------- | |
# ποΈ Gradio UI | |
# --------------------------- | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("""# π§ SmartManuals-AI | |
Ask any question and let the model answer from your uploaded manuals. | |
""") | |
with gr.Row(): | |
qbox = gr.Textbox(label="Ask a Question", placeholder="e.g. How to reset the SE3 console?") | |
model_select = gr.Dropdown(choices=AVAILABLE_MODELS, label="Choose LLM", value=DEFAULT_MODEL) | |
ansbox = gr.Textbox(label="Answer", lines=10) | |
btn = gr.Button("π Submit") | |
btn.click(fn=answer_query, inputs=[qbox, model_select], outputs=ansbox) | |
demo.launch() | |