Spaces:
Running
Running
File size: 6,089 Bytes
d6e6c98 2975595 d6e6c98 bfb4fda d6e6c98 2975595 df365ca d6e6c98 df365ca 05604a9 d6e6c98 835a614 d6e6c98 2975595 bfb4fda d6e6c98 bfb4fda d6e6c98 bc25066 d6e6c98 bc25066 bfb4fda bc25066 d6e6c98 2975595 d6e6c98 2975595 d6e6c98 2975595 6f368e7 c76542a d6e6c98 bc25066 d6e6c98 2975595 d6e6c98 2975595 d6e6c98 bfb4fda d6e6c98 df365ca bc25066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# β
SmartManuals-AI App for Hugging Face Spaces
# Full app.py with spaCy-based sentence segmentation and model dropdown selection
import os
import json
import fitz # PyMuPDF
import chromadb
import torch
import docx
import gradio as gr
import pytesseract
import numpy as np
import spacy
from tqdm import tqdm
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, util
# ---------------------------
# βοΈ Configuration
# ---------------------------
MANUALS_DIR = "./Manuals"
CHROMA_PATH = "./chroma_store"
CHROMA_COLLECTION = "manual_chunks"
CHUNK_SIZE = 750
CHUNK_OVERLAP = 100
EMBED_MODEL = "all-MiniLM-L6-v2"
DEFAULT_MODEL = "meta-llama/Llama-3-8B-Instruct"
AVAILABLE_MODELS = [
"meta-llama/Llama-3-8B-Instruct",
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"google/gemma-1.1-7b-it",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen1.5-7B-Chat"
]
HF_TOKEN = os.environ.get("HF_TOKEN")
# ---------------------------
# π Load NLP model for sentence splitting
# ---------------------------
try:
import spacy
nlp = spacy.load("en_core_web_sm")
except:
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
def split_sentences(text):
return [sent.text.strip() for sent in nlp(text).sents if sent.text.strip()]
# ---------------------------
# π§Ή Text cleanup
# ---------------------------
def clean(text):
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
# ---------------------------
# π PDF and DOCX extractors
# ---------------------------
def extract_pdf_text(path):
doc = fitz.open(path)
pages = []
for i, page in enumerate(doc):
text = page.get_text()
if not text.strip():
pix = page.get_pixmap(dpi=300)
img = Image.open(io.BytesIO(pix.tobytes("png")))
text = pytesseract.image_to_string(img)
pages.append((i + 1, text))
return pages
def extract_docx_text(path):
doc = docx.Document(path)
full_text = "\n".join([para.text for para in doc.paragraphs if para.text.strip()])
return [(1, full_text)]
# ---------------------------
# π¦ Chunk splitter
# ---------------------------
def chunkify(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
chunks = []
current = []
length = 0
for s in sentences:
tokens = len(s.split())
if length + tokens > max_tokens:
chunks.append(" ".join(current))
current = current[-overlap:]
length = sum(len(w.split()) for w in current)
current.append(s)
length += tokens
if current:
chunks.append(" ".join(current))
return chunks
# ---------------------------
# π Metadata from file
# ---------------------------
def extract_meta(name):
name = name.lower()
return {
"model": next((m for m in ["se3", "se4", "symbio", "explore"] if m in name), "unknown"),
"doc_type": next((d for d in ["owner", "service", "parts"] if d in name), "unknown"),
"brand": "life fitness"
}
# ---------------------------
# π Embed and store chunks
# ---------------------------
def embed_all():
embedder = SentenceTransformer(EMBED_MODEL)
client = chromadb.PersistentClient(path=CHROMA_PATH)
try:
client.delete_collection(CHROMA_COLLECTION)
except:
pass
db = client.create_collection(CHROMA_COLLECTION)
for fname in os.listdir(MANUALS_DIR):
path = os.path.join(MANUALS_DIR, fname)
if fname.endswith(".pdf"):
pages = extract_pdf_text(path)
elif fname.endswith(".docx"):
pages = extract_docx_text(path)
else:
continue
meta = extract_meta(fname)
for page, text in pages:
sents = split_sentences(clean(text))
chunks = chunkify(sents)
for i, chunk in enumerate(chunks):
db.add(
ids=[f"{fname}::p{page}::c{i}"],
documents=[chunk],
metadatas=[{**meta, "source": fname, "page": page}]
)
return db, embedder
# ---------------------------
# π€ Load selected LLM model
# ---------------------------
def load_model(repo):
tokenizer = AutoTokenizer.from_pretrained(repo, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
repo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None, token=HF_TOKEN
)
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
# ---------------------------
# π₯ Retrieval-Augmented QA
# ---------------------------
def answer_query(q, model_choice):
results = db.query(query_texts=[q], n_results=3)
context = "\n\n".join(results["documents"][0])
prompt = f"""
You are a helpful assistant. Answer based on the context. If unsure, say "I don't know".
Context:
{context}
Question: {q}
Answer:
"""
pipe = load_model(model_choice)
out = pipe(prompt, max_new_tokens=300, do_sample=False)[0]["generated_text"]
return out.split("Answer:")[-1].strip()
# ---------------------------
# π Initialize app
# ---------------------------
print("Embedding documents...")
db, embedder = embed_all()
print("Done embedding.")
# ---------------------------
# ποΈ Gradio UI
# ---------------------------
demo = gr.Blocks()
with demo:
gr.Markdown("""# π§ SmartManuals-AI
Ask any question and let the model answer from your uploaded manuals.
""")
with gr.Row():
qbox = gr.Textbox(label="Ask a Question", placeholder="e.g. How to reset the SE3 console?")
model_select = gr.Dropdown(choices=AVAILABLE_MODELS, label="Choose LLM", value=DEFAULT_MODEL)
ansbox = gr.Textbox(label="Answer", lines=10)
btn = gr.Button("π Submit")
btn.click(fn=answer_query, inputs=[qbox, model_select], outputs=ansbox)
demo.launch()
|