File size: 9,269 Bytes
10e9b7d eccf8e4 3c4371f 8d9e499 a38b536 10e9b7d 8d9e499 c0a6618 162e437 c0a6618 8d9e499 c0a6618 e80aab9 3db6293 a38b536 e80aab9 c0a6618 a38b536 31243f4 a38b536 31243f4 a38b536 31243f4 8d9e499 a38b536 8d9e499 a38b536 8d9e499 a38b536 8d9e499 a38b536 7d65c66 a38b536 e80aab9 8d9e499 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 162e437 a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e 162e437 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e a38b536 9e76a0e 162e437 9e76a0e a38b536 9e76a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import gradio as gr
import requests
import pandas as pd
from io import BytesIO
import re
# --- New Imports for Video Tool ---
from pytube import YouTube
import moviepy.editor as mp
# --- LangChain & Groq Imports ---
from groq import Groq
from langchain_groq import ChatGroq
from langchain.agents import AgentExecutor, create_tool_calling_agent
# --- CORRECTED TAVILY IMPORT ---
from langchain_tavily import TavilySearchResults
from langchain_core.prompts import ChatPromptTemplate
from langchain.tools import Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
TEMP_DIR = "/tmp" # Use the /tmp directory for temporary files in HF Spaces
# --- Tool Definition: Audio File Transcription ---
def transcribe_audio_file(task_id: str) -> str:
"""
Downloads an audio file (.mp3) for a given task_id, transcribes it, and returns the text.
Use this tool ONLY when a question explicitly mentions an audio file, .mp3, recording, or voice memo.
"""
print(f"Tool 'transcribe_audio_file' called with task_id: {task_id}")
try:
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
audio_response = requests.get(file_url)
audio_response.raise_for_status()
audio_bytes = BytesIO(audio_response.content)
audio_bytes.name = f"{task_id}.mp3"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
transcription = client.audio.transcriptions.create(file=audio_bytes, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during audio file transcription: {e}"
# --- Tool Definition: Video Transcription ---
def transcribe_youtube_video(video_url: str) -> str:
"""
Downloads a YouTube video from a URL, extracts its audio, and transcribes it to text.
Use this tool ONLY when a question provides a youtube.com URL.
"""
print(f"Tool 'transcribe_youtube_video' called with URL: {video_url}")
video_path, audio_path = None, None
try:
os.makedirs(TEMP_DIR, exist_ok=True)
yt = YouTube(video_url)
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
video_path = stream.download(output_path=TEMP_DIR)
video_clip = mp.VideoFileClip(video_path)
audio_path = os.path.join(TEMP_DIR, "temp_audio.mp3")
video_clip.audio.write_audiofile(audio_path, codec='mp3', logger=None)
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
with open(audio_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during YouTube transcription: {e}"
finally:
if video_path and os.path.exists(video_path): os.remove(video_path)
if audio_path and os.path.exists(audio_path): os.remove(audio_path)
# --- Agent Definition ---
class LangChainAgent:
def __init__(self, groq_api_key: str, tavily_api_key: str):
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
self.tools = [
TavilySearchResults(
name="web_search",
max_results=3,
tavily_api_key=tavily_api_key,
description="A search engine for finding up-to-date information, facts, and news on the internet."
),
Tool(
name="audio_file_transcriber",
func=transcribe_audio_file,
description="Use this ONLY for questions mentioning an audio file (.mp3, recording). Input MUST be the task_id.",
),
Tool(
name="youtube_video_transcriber",
func=transcribe_youtube_video,
description="Use this ONLY for questions providing a youtube.com URL. Input MUST be the URL.",
),
]
prompt = ChatPromptTemplate.from_messages([
("system", (
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. "
"You have access to a web search tool, an audio file transcriber, and a YouTube video transcriber.\n\n"
"**REASONING PROCESS:**\n"
"1. **Analyze the question:** Is it a general knowledge question, or does it mention a file/URL?\n"
"2. **Select ONE tool:**\n"
" - If the question requires current events, facts, or general knowledge, use `web_search`.\n"
" - If the question *explicitly* mentions an audio file, .mp3, or voice memo, use `audio_file_transcriber` with the provided `task_id`.\n"
" - If the question *explicitly* provides a `youtube.com` URL, use `youtube_video_transcriber` with that URL.\n"
" - If no tool is needed (e.g., math, logic puzzles), answer directly.\n"
"3. **Execute and Answer:** After using a tool, analyze the result and provide ONLY THE FINAL ANSWER. Do not explain your actions or apologize for errors."
)),
("human", "Question: {input}\nTask ID: {task_id}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
def __call__(self, question: str, task_id: str) -> str:
urls = re.findall(r'https?://[^\s]+', question)
input_for_agent = {"input": question, "task_id": task_id}
if urls:
input_for_agent['video_url'] = urls[0]
try:
response = self.agent_executor.invoke(input_for_agent)
return response.get("output", "Agent failed to produce an answer.")
except Exception as e:
return f"Agent execution failed with an error: {e}"
# --- Main Application Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile: return "Please Login to Hugging Face with the button.", None
username = profile.username
try:
groq_api_key = os.getenv("GROQ_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
if not all([groq_api_key, tavily_api_key]): raise ValueError("GROQ or TAVILY API key is missing.")
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
except Exception as e: return f"Error initializing agent: {e}", None
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e: return f"Error fetching questions: {e}", None
results_log, answers_payload = [], []
for item in questions_data:
task_id, q_text = item.get("task_id"), item.get("question")
if not task_id or not q_text: continue
answer = agent(question=q_text, task_id=task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": q_text, "Submitted Answer": answer})
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=240) # Increased timeout for video processing
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}")
return final_status, pd.DataFrame(results_log)
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Ultimate Agent Runner (Search + Audio + Video)")
gr.Markdown("This agent can search, transcribe audio files, and transcribe YouTube videos.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]:
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False) |