Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,6 @@ def transcribe_audio_from_task_id(task_id: str) -> str:
|
|
34 |
audio_response.raise_for_status()
|
35 |
|
36 |
# Step 2: Prepare the file for the Groq API
|
37 |
-
# The API expects a file-like object with a name.
|
38 |
audio_bytes = BytesIO(audio_response.content)
|
39 |
audio_bytes.name = f"{task_id}.mp3" # Give the file-like object a name
|
40 |
|
@@ -63,4 +62,115 @@ def transcribe_audio_from_task_id(task_id: str) -> str:
|
|
63 |
class LangChainAgent:
|
64 |
def __init__(self, groq_api_key: str, tavily_api_key: str):
|
65 |
print("Initializing LangChainAgent...")
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
audio_response.raise_for_status()
|
35 |
|
36 |
# Step 2: Prepare the file for the Groq API
|
|
|
37 |
audio_bytes = BytesIO(audio_response.content)
|
38 |
audio_bytes.name = f"{task_id}.mp3" # Give the file-like object a name
|
39 |
|
|
|
62 |
class LangChainAgent:
|
63 |
def __init__(self, groq_api_key: str, tavily_api_key: str):
|
64 |
print("Initializing LangChainAgent...")
|
65 |
+
|
66 |
+
# THIS IS THE CORRECTED LINE
|
67 |
+
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
|
68 |
+
|
69 |
+
# Define all available tools
|
70 |
+
audio_tool = Tool(
|
71 |
+
name="audio_transcriber",
|
72 |
+
func=transcribe_audio_from_task_id,
|
73 |
+
description="Use this tool to transcribe an audio file. The input must be the task_id of the question.",
|
74 |
+
)
|
75 |
+
self.tools = [
|
76 |
+
TavilySearchResults(max_results=3, tavily_api_key=tavily_api_key, name="web_search"),
|
77 |
+
audio_tool,
|
78 |
+
]
|
79 |
+
|
80 |
+
# Define the strict system prompt
|
81 |
+
prompt = ChatPromptTemplate.from_messages([
|
82 |
+
("system", (
|
83 |
+
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. "
|
84 |
+
"You have access to the following tools: a web search tool and an audio transcription tool.\n"
|
85 |
+
"RULES:\n"
|
86 |
+
"- Carefully analyze the user's question to determine if a tool is needed.\n"
|
87 |
+
"- For questions requiring current information or facts, use the 'web_search' tool.\n"
|
88 |
+
"- For questions that mention an audio file (.mp3, recording, voice memo, etc.), use the 'audio_transcriber' tool with the provided 'task_id'.\n"
|
89 |
+
"- Once you have all the necessary information, you MUST provide ONLY THE FINAL ANSWER to the user's question. Do not include any extra conversation, explanations, apologies, or introductory phrases."
|
90 |
+
)),
|
91 |
+
("human", "Question: {input}\nTask ID: {task_id}"),
|
92 |
+
("placeholder", "{agent_scratchpad}"),
|
93 |
+
])
|
94 |
+
|
95 |
+
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
|
96 |
+
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
|
97 |
+
print("LangChainAgent initialized.")
|
98 |
+
|
99 |
+
def __call__(self, question: str, task_id: str) -> str:
|
100 |
+
print(f"Agent received question (ID: {task_id}): {question[:50]}...")
|
101 |
+
try:
|
102 |
+
response = self.agent_executor.invoke({"input": question, "task_id": task_id})
|
103 |
+
answer = response.get("output", "Agent failed to produce an answer.")
|
104 |
+
except Exception as e:
|
105 |
+
answer = f"Agent execution failed with an error: {e}"
|
106 |
+
print(f"Agent generated answer: {answer}")
|
107 |
+
return answer
|
108 |
+
|
109 |
+
|
110 |
+
# --- Main Application Logic ---
|
111 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
112 |
+
space_id = os.getenv("SPACE_ID")
|
113 |
+
if not profile:
|
114 |
+
return "Please Login to Hugging Face with the button.", None
|
115 |
+
username = profile.username
|
116 |
+
print(f"User logged in: {username}")
|
117 |
+
|
118 |
+
try:
|
119 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
120 |
+
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
121 |
+
if not all([groq_api_key, tavily_api_key]):
|
122 |
+
raise ValueError("An API key secret (GROQ or TAVILY) is missing.")
|
123 |
+
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
|
124 |
+
except Exception as e:
|
125 |
+
return f"Error initializing agent: {e}", None
|
126 |
+
|
127 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
128 |
+
print(f"Fetching questions from: {questions_url}")
|
129 |
+
try:
|
130 |
+
response = requests.get(questions_url, timeout=20)
|
131 |
+
response.raise_for_status()
|
132 |
+
questions_data = response.json()
|
133 |
+
except Exception as e:
|
134 |
+
return f"Error fetching questions: {e}", None
|
135 |
+
|
136 |
+
results_log, answers_payload = [], []
|
137 |
+
for item in questions_data:
|
138 |
+
task_id, question_text = item.get("task_id"), item.get("question")
|
139 |
+
if not task_id or not question_text: continue
|
140 |
+
submitted_answer = agent(question=question_text, task_id=task_id)
|
141 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
142 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
143 |
+
|
144 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
145 |
+
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
146 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
147 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
148 |
+
try:
|
149 |
+
response = requests.post(submit_url, json=submission_data, timeout=90) # Increased timeout
|
150 |
+
response.raise_for_status()
|
151 |
+
result_data = response.json()
|
152 |
+
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
|
153 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
154 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
155 |
+
f"Message: {result_data.get('message', 'No message received.')}")
|
156 |
+
return final_status, pd.DataFrame(results_log)
|
157 |
+
except Exception as e:
|
158 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
159 |
+
|
160 |
+
|
161 |
+
# --- Gradio Interface ---
|
162 |
+
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown("# Advanced Agent Evaluation Runner (Search + Groq Audio)")
|
164 |
+
gr.Markdown("This agent can search the web with Tavily and transcribe audio with Groq's Whisper.")
|
165 |
+
gr.LoginButton()
|
166 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
167 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
168 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
169 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
173 |
+
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]:
|
174 |
+
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
|
175 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
176 |
+
demo.launch(debug=True, share=False)
|