Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,95 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
from groq import Groq
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
15 |
"""
|
16 |
-
Initializes the
|
17 |
"""
|
18 |
-
print("Initializing
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def __call__(self, question: str) -> str:
|
23 |
"""
|
24 |
-
This method is called to answer a question
|
|
|
25 |
"""
|
26 |
-
print(f"
|
27 |
-
|
28 |
-
#
|
29 |
-
# which is ideal for the GAIA benchmark's exact-match scoring.
|
30 |
-
system_prompt = (
|
31 |
-
"You are an expert AI agent. Your goal is to answer the following question as accurately "
|
32 |
-
"and concisely as possible. Provide only the final answer, without any introductory text, "
|
33 |
-
"explanations, or additional formatting."
|
34 |
-
)
|
35 |
-
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
{
|
40 |
-
"role": "system",
|
41 |
-
"content": system_prompt,
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"role": "user",
|
45 |
-
"content": question,
|
46 |
-
}
|
47 |
-
],
|
48 |
-
model="llama3-70b-8192", # A powerful model available via Groq
|
49 |
-
temperature=0.0, # Set to 0 for deterministic, factual answers
|
50 |
-
)
|
51 |
-
|
52 |
-
answer = chat_completion.choices[0].message.content.strip()
|
53 |
-
print(f"GroqAgent generated answer: {answer}")
|
54 |
-
return answer
|
55 |
-
|
56 |
except Exception as e:
|
57 |
-
print(f"An error occurred
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
62 |
"""
|
63 |
-
Fetches
|
64 |
and displays the results.
|
65 |
"""
|
66 |
-
# ---
|
67 |
-
space_id = os.getenv("SPACE_ID")
|
68 |
-
|
69 |
if profile:
|
70 |
-
username= f"{profile.username}"
|
71 |
print(f"User logged in: {username}")
|
72 |
else:
|
73 |
print("User not logged in.")
|
@@ -77,70 +99,45 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
77 |
questions_url = f"{api_url}/questions"
|
78 |
submit_url = f"{api_url}/submit"
|
79 |
|
80 |
-
# 1. Instantiate Agent (
|
81 |
try:
|
82 |
-
# Securely get the API key from Hugging Face Space secrets
|
83 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
87 |
except Exception as e:
|
88 |
print(f"Error instantiating agent: {e}")
|
89 |
return f"Error initializing agent: {e}", None
|
90 |
|
91 |
-
# The link to your codebase (useful for verification, so please keep your space public)
|
92 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
93 |
print(f"Agent code link: {agent_code}")
|
94 |
|
95 |
-
# 2. Fetch Questions
|
96 |
print(f"Fetching questions from: {questions_url}")
|
97 |
try:
|
98 |
-
response = requests.get(questions_url, timeout=
|
99 |
response.raise_for_status()
|
100 |
questions_data = response.json()
|
101 |
-
if not questions_data:
|
102 |
-
print("Fetched questions list is empty.")
|
103 |
-
return "Fetched questions list is empty or invalid format.", None
|
104 |
-
print(f"Fetched {len(questions_data)} questions.")
|
105 |
-
except requests.exceptions.RequestException as e:
|
106 |
-
print(f"Error fetching questions: {e}")
|
107 |
-
return f"Error fetching questions: {e}", None
|
108 |
-
except requests.exceptions.JSONDecodeError as e:
|
109 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
110 |
-
print(f"Response text: {response.text[:500]}")
|
111 |
-
return f"Error decoding server response for questions: {e}", None
|
112 |
except Exception as e:
|
113 |
-
|
114 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
115 |
|
116 |
-
# 3. Run your Agent
|
117 |
results_log = []
|
118 |
answers_payload = []
|
119 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
120 |
for item in questions_data:
|
121 |
task_id = item.get("task_id")
|
122 |
question_text = item.get("question")
|
123 |
if not task_id or question_text is None:
|
124 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
125 |
continue
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
130 |
-
except Exception as e:
|
131 |
-
print(f"Error running agent on task {task_id}: {e}")
|
132 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
133 |
|
134 |
-
|
135 |
-
print("Agent did not produce any answers to submit.")
|
136 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
137 |
-
|
138 |
-
# 4. Prepare Submission
|
139 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
140 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
141 |
-
print(status_update)
|
142 |
|
143 |
-
# 5. Submit
|
144 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
145 |
try:
|
146 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -153,63 +150,28 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
153 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
154 |
f"Message: {result_data.get('message', 'No message received.')}"
|
155 |
)
|
156 |
-
print("Submission successful.")
|
157 |
results_df = pd.DataFrame(results_log)
|
158 |
return final_status, results_df
|
159 |
-
except requests.exceptions.HTTPError as e:
|
160 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
161 |
-
try:
|
162 |
-
error_json = e.response.json()
|
163 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
164 |
-
except requests.exceptions.JSONDecodeError:
|
165 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
166 |
-
status_message = f"Submission Failed: {error_detail}"
|
167 |
-
print(status_message)
|
168 |
-
results_df = pd.DataFrame(results_log)
|
169 |
-
return status_message, results_df
|
170 |
-
except requests.exceptions.Timeout:
|
171 |
-
status_message = "Submission Failed: The request timed out."
|
172 |
-
print(status_message)
|
173 |
-
results_df = pd.DataFrame(results_log)
|
174 |
-
return status_message, results_df
|
175 |
-
except requests.exceptions.RequestException as e:
|
176 |
-
status_message = f"Submission Failed: Network error - {e}"
|
177 |
-
print(status_message)
|
178 |
-
results_df = pd.DataFrame(results_log)
|
179 |
-
return status_message, results_df
|
180 |
except Exception as e:
|
181 |
status_message = f"An unexpected error occurred during submission: {e}"
|
182 |
-
print(status_message)
|
183 |
results_df = pd.DataFrame(results_log)
|
184 |
return status_message, results_df
|
185 |
|
186 |
-
|
187 |
-
# --- Build Gradio Interface using Blocks ---
|
188 |
with gr.Blocks() as demo:
|
189 |
-
gr.Markdown("#
|
190 |
gr.Markdown(
|
191 |
"""
|
192 |
**Instructions:**
|
193 |
-
1. Make sure you have set
|
194 |
-
2. Log in
|
195 |
-
3. Click 'Run Evaluation
|
196 |
-
---
|
197 |
-
**Disclaimers:**
|
198 |
-
Once you click the "submit" button, the process can take some time as the agent answers all the questions.
|
199 |
-
This space provides a basic setup. You are encouraged to modify the `GroqAgent` class to experiment with different models, prompts, or even add tools to improve your score!
|
200 |
"""
|
201 |
)
|
202 |
-
|
203 |
gr.LoginButton()
|
204 |
-
|
205 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
206 |
-
|
207 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
208 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
209 |
-
|
210 |
-
# CORRECTED LINE: The `inputs` argument is removed. Gradio passes the
|
211 |
-
# OAuthProfile automatically to the `run_and_submit_all` function
|
212 |
-
# because of the type hint in its definition.
|
213 |
run_button.click(
|
214 |
fn=run_and_submit_all,
|
215 |
outputs=[status_output, results_table]
|
@@ -217,19 +179,14 @@ with gr.Blocks() as demo:
|
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
220 |
-
|
221 |
-
if space_id_startup:
|
222 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
223 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
224 |
-
else:
|
225 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
|
226 |
-
|
227 |
if not os.getenv("GROQ_API_KEY"):
|
228 |
-
|
229 |
else:
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
233 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
234 |
-
print("Launching Gradio Interface for Groq Agent Evaluation...")
|
235 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
from groq import Groq
|
6 |
|
7 |
+
# --- New Imports for LangChain Agent ---
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
from langchain_core.prompts import ChatPromptTemplate
|
12 |
+
|
13 |
+
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
+
|
18 |
+
# --- Agent Definition ---
|
19 |
+
# This new agent uses LangChain to orchestrate an LLM with tools.
|
20 |
+
class LangChainAgent:
|
21 |
+
def __init__(self, groq_api_key, tavily_api_key):
|
22 |
"""
|
23 |
+
Initializes the agent with an LLM and a set of tools.
|
24 |
"""
|
25 |
+
print("Initializing LangChainAgent...")
|
26 |
+
|
27 |
+
# 1. Initialize the LLM
|
28 |
+
# We use ChatGroq, the LangChain integration for Groq's API.
|
29 |
+
self.llm = ChatGroq(
|
30 |
+
model_name="llama3-70b-8192",
|
31 |
+
groq_api_key=groq_api_key,
|
32 |
+
temperature=0.0
|
33 |
+
)
|
34 |
+
|
35 |
+
# 2. Define the tools the agent can use
|
36 |
+
# For now, we'll just give it a web search tool.
|
37 |
+
self.tools = [
|
38 |
+
TavilySearchResults(max_results=3, tavily_api_key=tavily_api_key)
|
39 |
+
]
|
40 |
+
|
41 |
+
# 3. Create the Agent Prompt
|
42 |
+
# This tells the agent how to behave and how to use the tools.
|
43 |
+
prompt = ChatPromptTemplate.from_messages(
|
44 |
+
[
|
45 |
+
("system", "You are a helpful assistant. You have access to a web search tool. Respond with the final answer to the user's question."),
|
46 |
+
("placeholder", "{chat_history}"),
|
47 |
+
("human", "{input}"),
|
48 |
+
("placeholder", "{agent_scratchpad}"),
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
# 4. Create the Agent itself
|
53 |
+
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
|
54 |
+
|
55 |
+
# 5. Create the Agent Executor
|
56 |
+
# This is the runtime that will actually execute the agent's logic.
|
57 |
+
self.agent_executor = AgentExecutor(
|
58 |
+
agent=agent,
|
59 |
+
tools=self.tools,
|
60 |
+
verbose=True # Set to True to see the agent's thought process
|
61 |
+
)
|
62 |
+
print("LangChainAgent initialized.")
|
63 |
+
|
64 |
|
65 |
def __call__(self, question: str) -> str:
|
66 |
"""
|
67 |
+
This method is called to answer a question.
|
68 |
+
It invokes the agent executor.
|
69 |
"""
|
70 |
+
print(f"LangChainAgent received question (first 50 chars): {question[:50]}...")
|
71 |
+
|
72 |
+
# We need to handle the case where the agent makes a mistake
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
try:
|
74 |
+
response = self.agent_executor.invoke({"input": question})
|
75 |
+
answer = response.get("output", "No answer found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
except Exception as e:
|
77 |
+
print(f"An error occurred in the agent executor: {e}")
|
78 |
+
answer = f"Agent failed with an error: {e}"
|
79 |
+
|
80 |
+
print(f"LangChainAgent generated answer: {answer}")
|
81 |
+
return answer
|
82 |
|
83 |
|
84 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
85 |
"""
|
86 |
+
Fetches questions, runs the LangChainAgent on them, submits the answers,
|
87 |
and displays the results.
|
88 |
"""
|
89 |
+
# --- Authentication and Setup ---
|
90 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
91 |
if profile:
|
92 |
+
username = f"{profile.username}"
|
93 |
print(f"User logged in: {username}")
|
94 |
else:
|
95 |
print("User not logged in.")
|
|
|
99 |
questions_url = f"{api_url}/questions"
|
100 |
submit_url = f"{api_url}/submit"
|
101 |
|
102 |
+
# 1. Instantiate Agent (using the new LangChainAgent)
|
103 |
try:
|
|
|
104 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
105 |
+
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
106 |
+
if not groq_api_key or not tavily_api_key:
|
107 |
+
raise ValueError("API Keys (GROQ_API_KEY, TAVILY_API_KEY) not found in secrets.")
|
108 |
+
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
|
109 |
except Exception as e:
|
110 |
print(f"Error instantiating agent: {e}")
|
111 |
return f"Error initializing agent: {e}", None
|
112 |
|
|
|
113 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
114 |
print(f"Agent code link: {agent_code}")
|
115 |
|
116 |
+
# 2. Fetch Questions (same as before)
|
117 |
print(f"Fetching questions from: {questions_url}")
|
118 |
try:
|
119 |
+
response = requests.get(questions_url, timeout=20)
|
120 |
response.raise_for_status()
|
121 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
except Exception as e:
|
123 |
+
return f"Error fetching questions: {e}", None
|
|
|
124 |
|
125 |
+
# 3. Run your Agent (same as before)
|
126 |
results_log = []
|
127 |
answers_payload = []
|
|
|
128 |
for item in questions_data:
|
129 |
task_id = item.get("task_id")
|
130 |
question_text = item.get("question")
|
131 |
if not task_id or question_text is None:
|
|
|
132 |
continue
|
133 |
+
submitted_answer = agent(question_text)
|
134 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
135 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# 4. Prepare Submission (same as before)
|
|
|
|
|
|
|
|
|
138 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
139 |
|
140 |
+
# 5. Submit (same as before)
|
141 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
142 |
try:
|
143 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
150 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
151 |
f"Message: {result_data.get('message', 'No message received.')}"
|
152 |
)
|
|
|
153 |
results_df = pd.DataFrame(results_log)
|
154 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
status_message = f"An unexpected error occurred during submission: {e}"
|
|
|
157 |
results_df = pd.DataFrame(results_log)
|
158 |
return status_message, results_df
|
159 |
|
160 |
+
# --- Build Gradio Interface (Mostly the same) ---
|
|
|
161 |
with gr.Blocks() as demo:
|
162 |
+
gr.Markdown("# LangChain Agent Evaluation Runner")
|
163 |
gr.Markdown(
|
164 |
"""
|
165 |
**Instructions:**
|
166 |
+
1. Make sure you have set `GROQ_API_KEY` and `TAVILY_API_KEY` in your Space's secrets.
|
167 |
+
2. Log in below. This is required for submission.
|
168 |
+
3. Click 'Run Evaluation' to start the agent. You can see its thought process in the application logs!
|
|
|
|
|
|
|
|
|
169 |
"""
|
170 |
)
|
|
|
171 |
gr.LoginButton()
|
|
|
172 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
173 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
174 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
|
|
|
|
|
|
|
175 |
run_button.click(
|
176 |
fn=run_and_submit_all,
|
177 |
outputs=[status_output, results_table]
|
|
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
182 |
+
# Startup checks for secrets
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
if not os.getenv("GROQ_API_KEY"):
|
184 |
+
print("⚠️ WARNING: GROQ_API_KEY secret not set.")
|
185 |
else:
|
186 |
+
print("✅ GROQ_API_KEY secret is set.")
|
187 |
+
if not os.getenv("TAVILY_API_KEY"):
|
188 |
+
print("⚠️ WARNING: TAVILY_API_KEY secret not set.")
|
189 |
+
else:
|
190 |
+
print("✅ TAVILY_API_KEY secret is set.")
|
191 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
192 |
demo.launch(debug=True, share=False)
|