paddle-ocr-demo / app.py
codic's picture
Update app.py
21c5eee verified
raw
history blame
9.08 kB
from paddleocr import PaddleOCR
from gliner import GLiNER
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
import tempfile
import pandas as pd
import re
import traceback
import zxingcpp # QR decoding
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment setup
os.environ['GLINER_HOME'] = './gliner_models'
# Load GLiNER model
try:
logger.info("Loading GLiNER model...")
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception:
logger.exception("Failed to load GLiNER model")
raise
# Regex patterns for emails and websites
EMAIL_REGEX = re.compile(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b")
WEBSITE_REGEX = re.compile(r"(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})")
# Phone number constants and regex for Saudi/UAE support
SAUDI_CODE = '+966'
UAE_CODE = '+971'
PHONE_REGEX = re.compile(r'^(?:\+9665\d{8}|\+9715\d{8}|05\d{8}|5\d{8})$')
# Utility functions
def extract_emails(text: str) -> list[str]:
return [e.lower() for e in EMAIL_REGEX.findall(text)]
def extract_websites(text: str) -> list[str]:
return [m.lower() for m in WEBSITE_REGEX.findall(text)]
def normalize_website(url: str) -> str | None:
u = url.lower().replace('www.', '').split('/')[0]
return f"www.{u}" if re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", u) else None
def clean_phone_number(phone: str) -> str | None:
cleaned = re.sub(r"[^\d+]", "", phone)
# International formats
if cleaned.startswith(SAUDI_CODE + '5') and len(cleaned) == 12:
return cleaned
if cleaned.startswith(UAE_CODE + '5') and len(cleaned) == 12:
return cleaned
# Local to international
if cleaned.startswith('05') and len(cleaned) == 10:
# Determine country by leading digit after 0 (6 Saudi, 5 UAE)
return (SAUDI_CODE if cleaned[1]=='5' and cleaned[1:2] == '5' else UAE_CODE) + cleaned[1:]
if cleaned.startswith('5') and len(cleaned) == 9:
return UAE_CODE + cleaned
if cleaned.startswith('9665') and len(cleaned) == 12:
return '+' + cleaned
return None
def process_phone_numbers(text: str) -> list[str]:
found = []
for match in re.finditer(r'(?:\+?\d{8,13}|05\d{8})', text):
raw = match.group().strip()
if (c := clean_phone_number(raw)):
found.append(c)
return list(set(found))
def extract_address(ocr_texts: list[str]) -> str | None:
keywords = ["block","street","ave","area","industrial","road"]
parts = [t for t in ocr_texts if any(kw in t.lower() for kw in keywords)]
return " ".join(parts) if parts else None
# QR scanning
def scan_qr_code(image: Image.Image) -> str | None:
try:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image.save(tmp, format="PNG")
path = tmp.name
img_cv = cv2.imread(path)
# Direct decode
try:
res = zxingcpp.read_barcodes(img_cv)
if res and res[0].text:
return res[0].text.strip()
except:
logger.warning("Direct ZXing decode failed")
# Fallback recolor
default_color = (0, 0, 0)
tol = 50
pix = list(image.convert('RGB').getdata())
new_pix = [default_color if all(abs(p[i]-default_color[i])<=tol for i in range(3)) else (255,255,255) for p in pix]
img_conv = Image.new('RGB', image.size)
img_conv.putdata(new_pix)
cv2.imwrite(path + '_conv.png', cv2.cvtColor(np.array(img_conv), cv2.COLOR_RGB2BGR))
res = zxingcpp.read_barcodes(cv2.imread(path + '_conv.png'))
if res and res[0].text:
return res[0].text.strip()
except Exception:
logger.exception("QR scan error")
return None
# Deduplication
def deduplicate_data(results: dict[str, list[str]]) -> None:
def clean_list(items, normalizer=lambda x: x):
seen = set(); out = []
for raw in items:
for part in re.split(r'[;,]\s*', raw):
p = part.strip()
if not p: continue
norm = normalizer(p)
if norm and norm not in seen:
seen.add(norm); out.append(norm)
return out
# Normalize lists
results['Email Address'] = clean_list(results.get('Email Address', []), lambda e: e.lower())
results['Website'] = clean_list(results.get('Website', []), normalize_website)
results['Phone Number'] = clean_list(results.get('Phone Number', []), clean_phone_number)
# Others: simple dedupe
for key in ['Person Name','Company Name','Job Title','Address','QR Code']:
seen = set(); out = []
for v in results.get(key, []):
vv = v.strip()
if vv and vv not in seen:
seen.add(vv); out.append(vv)
results[key] = out
# Inference pipeline
def inference(img: Image.Image, confidence: float):
try:
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False,
det_model_dir='./models/det/en',
cls_model_dir='./models/cls/en',
rec_model_dir='./models/rec/en')
arr = np.array(img)
raw = ocr.ocr(arr, cls=True)[0]
ocr_texts = [ln[1][0] for ln in raw]
full_text = ' '.join(ocr_texts)
labels = ['person name','company name','job title','phone number','email address','address','website']
entities = gliner_model.predict_entities(full_text, labels, threshold=confidence, flat_ner=True)
results = {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}
# Entity processing
for ent in entities:
txt, lbl = ent['text'].strip(), ent['label'].lower()
if lbl == 'person name':
results['Person Name'].append(txt)
elif lbl == 'company name':
results['Company Name'].append(txt)
elif lbl == 'job title':
results['Job Title'].append(txt.title())
elif lbl == 'phone number':
if (c:=clean_phone_number(txt)):
results['Phone Number'].append(c)
elif lbl == 'email address' and EMAIL_REGEX.fullmatch(txt):
results['Email Address'].append(txt.lower())
elif lbl == 'website' and WEBSITE_REGEX.search(txt):
if (n:=normalize_website(txt)):
results['Website'].append(n)
elif lbl == 'address':
results['Address'].append(txt)
# Regex fallbacks
results['Email Address'] += extract_emails(full_text)
results['Website'] += extract_websites(full_text)
# Phone regex fallback
results['Phone Number'] += process_phone_numbers(full_text)
# QR code
if qr := scan_qr_code(img):
results['QR Code'].append(qr)
# Address fallback
if not results['Address']:
if addr := extract_address(ocr_texts):
results['Address'].append(addr)
# Deduplicate
deduplicate_data(results)
# Company fallback
if not results['Company Name']:
if results['Email Address']:
dom = results['Email Address'][0].split('@')[-1].split('.')[0]
results['Company Name'].append(dom.title())
elif results['Website']:
dom = results['Website'][0].split('.')[1]
results['Company Name'].append(dom.title())
# Name fallback
if not results['Person Name']:
for t in ocr_texts:
if re.match(r'^(?:[A-Z][a-z]+\s?){2,}$', t):
results['Person Name'].append(t)
break
# Build CSV map including all keys
csv_map = {k: '; '.join(v) for k,v in results.items()}
with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
pd.DataFrame([csv_map]).to_csv(f, index=False)
csv_path = f.name
return full_text, results, csv_path, ''
except Exception:
err = traceback.format_exc()
logger.error(f"Processing failed: {err}")
return '', {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}, None, f"Error:\n{err}"
# Gradio Interface
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Upload Business Card'),
gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
[gr.Textbox(label="OCR Result"),
gr.JSON(label="Structured Data"),
gr.File(label="Download CSV"),
gr.Textbox(label="Error Log")],
title='Enhanced Business Card Parser',
description='Accurate entity extraction with combined AI and regex validation (with Saudi/UAE support)',
css=".gr-interface {max-width: 800px !important;}"
)
demo.launch()