Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,10 +27,11 @@ except Exception:
|
|
27 |
logger.exception("Failed to load GLiNER model")
|
28 |
raise
|
29 |
|
30 |
-
# Regex patterns
|
31 |
EMAIL_REGEX = re.compile(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b")
|
32 |
-
WEBSITE_REGEX = re.compile(r"
|
33 |
-
|
|
|
34 |
SAUDI_CODE = '+966'
|
35 |
UAE_CODE = '+971'
|
36 |
PHONE_REGEX = re.compile(r'^(?:\+9665\d{8}|\+9715\d{8}|05\d{8}|5\d{8})$')
|
@@ -42,6 +43,10 @@ def extract_emails(text: str) -> list[str]:
|
|
42 |
def extract_websites(text: str) -> list[str]:
|
43 |
return [m.lower() for m in WEBSITE_REGEX.findall(text)]
|
44 |
|
|
|
|
|
|
|
|
|
45 |
def clean_phone_number(phone: str) -> str | None:
|
46 |
cleaned = re.sub(r"[^\d+]", "", phone)
|
47 |
# International formats
|
@@ -51,11 +56,12 @@ def clean_phone_number(phone: str) -> str | None:
|
|
51 |
return cleaned
|
52 |
# Local to international
|
53 |
if cleaned.startswith('05') and len(cleaned) == 10:
|
54 |
-
|
|
|
55 |
if cleaned.startswith('5') and len(cleaned) == 9:
|
56 |
-
return
|
57 |
if cleaned.startswith('9665') and len(cleaned) == 12:
|
58 |
-
return
|
59 |
return None
|
60 |
|
61 |
def process_phone_numbers(text: str) -> list[str]:
|
@@ -66,12 +72,6 @@ def process_phone_numbers(text: str) -> list[str]:
|
|
66 |
found.append(c)
|
67 |
return list(set(found))
|
68 |
|
69 |
-
def normalize_website(url: str) -> str | None:
|
70 |
-
u = url.lower().replace('www.', '').split('/')[0]
|
71 |
-
if re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", u):
|
72 |
-
return f"www.{u}"
|
73 |
-
return None
|
74 |
-
|
75 |
def extract_address(ocr_texts: list[str]) -> str | None:
|
76 |
keywords = ["block","street","ave","area","industrial","road"]
|
77 |
parts = [t for t in ocr_texts if any(kw in t.lower() for kw in keywords)]
|
@@ -119,9 +119,9 @@ def deduplicate_data(results: dict[str, list[str]]) -> None:
|
|
119 |
seen.add(norm); out.append(norm)
|
120 |
return out
|
121 |
# Normalize lists
|
122 |
-
results['Email Address'] = clean_list(results
|
123 |
-
results['Website'] = clean_list(results
|
124 |
-
results['Phone Number'] = clean_list(results
|
125 |
# Others: simple dedupe
|
126 |
for key in ['Person Name','Company Name','Job Title','Address','QR Code']:
|
127 |
seen = set(); out = []
|
@@ -150,27 +150,35 @@ def inference(img: Image.Image, confidence: float):
|
|
150 |
# Entity processing
|
151 |
for ent in entities:
|
152 |
txt, lbl = ent['text'].strip(), ent['label'].lower()
|
153 |
-
if lbl == 'person name':
|
154 |
-
|
155 |
-
elif lbl == '
|
|
|
|
|
|
|
156 |
elif lbl == 'phone number':
|
157 |
-
if (c:=clean_phone_number(txt)):
|
|
|
158 |
elif lbl == 'email address' and EMAIL_REGEX.fullmatch(txt):
|
159 |
results['Email Address'].append(txt.lower())
|
160 |
-
elif lbl == 'website' and WEBSITE_REGEX.
|
161 |
-
if (n:=normalize_website(txt)):
|
162 |
-
|
|
|
|
|
163 |
# Regex fallbacks
|
164 |
results['Email Address'] += extract_emails(full_text)
|
165 |
results['Website'] += extract_websites(full_text)
|
166 |
# Phone regex fallback
|
167 |
results['Phone Number'] += process_phone_numbers(full_text)
|
168 |
-
# QR
|
169 |
-
if qr := scan_qr_code(img):
|
|
|
170 |
# Address fallback
|
171 |
if not results['Address']:
|
172 |
-
if addr := extract_address(ocr_texts):
|
173 |
-
|
|
|
174 |
deduplicate_data(results)
|
175 |
# Company fallback
|
176 |
if not results['Company Name']:
|
@@ -184,17 +192,18 @@ def inference(img: Image.Image, confidence: float):
|
|
184 |
if not results['Person Name']:
|
185 |
for t in ocr_texts:
|
186 |
if re.match(r'^(?:[A-Z][a-z]+\s?){2,}$', t):
|
187 |
-
results['Person Name'].append(t)
|
188 |
-
|
189 |
-
|
|
|
190 |
with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
|
191 |
pd.DataFrame([csv_map]).to_csv(f, index=False)
|
192 |
csv_path = f.name
|
193 |
-
return full_text,
|
194 |
except Exception:
|
195 |
err = traceback.format_exc()
|
196 |
logger.error(f"Processing failed: {err}")
|
197 |
-
return '', {}, None, f"Error:\n{err}"
|
198 |
|
199 |
# Gradio Interface
|
200 |
if __name__ == '__main__':
|
@@ -211,4 +220,3 @@ if __name__ == '__main__':
|
|
211 |
css=".gr-interface {max-width: 800px !important;}"
|
212 |
)
|
213 |
demo.launch()
|
214 |
-
|
|
|
27 |
logger.exception("Failed to load GLiNER model")
|
28 |
raise
|
29 |
|
30 |
+
# Regex patterns for emails and websites
|
31 |
EMAIL_REGEX = re.compile(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b")
|
32 |
+
WEBSITE_REGEX = re.compile(r"(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})")
|
33 |
+
|
34 |
+
# Phone number constants and regex for Saudi/UAE support
|
35 |
SAUDI_CODE = '+966'
|
36 |
UAE_CODE = '+971'
|
37 |
PHONE_REGEX = re.compile(r'^(?:\+9665\d{8}|\+9715\d{8}|05\d{8}|5\d{8})$')
|
|
|
43 |
def extract_websites(text: str) -> list[str]:
|
44 |
return [m.lower() for m in WEBSITE_REGEX.findall(text)]
|
45 |
|
46 |
+
def normalize_website(url: str) -> str | None:
|
47 |
+
u = url.lower().replace('www.', '').split('/')[0]
|
48 |
+
return f"www.{u}" if re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", u) else None
|
49 |
+
|
50 |
def clean_phone_number(phone: str) -> str | None:
|
51 |
cleaned = re.sub(r"[^\d+]", "", phone)
|
52 |
# International formats
|
|
|
56 |
return cleaned
|
57 |
# Local to international
|
58 |
if cleaned.startswith('05') and len(cleaned) == 10:
|
59 |
+
# Determine country by leading digit after 0 (6 Saudi, 5 UAE)
|
60 |
+
return (SAUDI_CODE if cleaned[1]=='5' and cleaned[1:2] == '5' else UAE_CODE) + cleaned[1:]
|
61 |
if cleaned.startswith('5') and len(cleaned) == 9:
|
62 |
+
return UAE_CODE + cleaned
|
63 |
if cleaned.startswith('9665') and len(cleaned) == 12:
|
64 |
+
return '+' + cleaned
|
65 |
return None
|
66 |
|
67 |
def process_phone_numbers(text: str) -> list[str]:
|
|
|
72 |
found.append(c)
|
73 |
return list(set(found))
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def extract_address(ocr_texts: list[str]) -> str | None:
|
76 |
keywords = ["block","street","ave","area","industrial","road"]
|
77 |
parts = [t for t in ocr_texts if any(kw in t.lower() for kw in keywords)]
|
|
|
119 |
seen.add(norm); out.append(norm)
|
120 |
return out
|
121 |
# Normalize lists
|
122 |
+
results['Email Address'] = clean_list(results.get('Email Address', []), lambda e: e.lower())
|
123 |
+
results['Website'] = clean_list(results.get('Website', []), normalize_website)
|
124 |
+
results['Phone Number'] = clean_list(results.get('Phone Number', []), clean_phone_number)
|
125 |
# Others: simple dedupe
|
126 |
for key in ['Person Name','Company Name','Job Title','Address','QR Code']:
|
127 |
seen = set(); out = []
|
|
|
150 |
# Entity processing
|
151 |
for ent in entities:
|
152 |
txt, lbl = ent['text'].strip(), ent['label'].lower()
|
153 |
+
if lbl == 'person name':
|
154 |
+
results['Person Name'].append(txt)
|
155 |
+
elif lbl == 'company name':
|
156 |
+
results['Company Name'].append(txt)
|
157 |
+
elif lbl == 'job title':
|
158 |
+
results['Job Title'].append(txt.title())
|
159 |
elif lbl == 'phone number':
|
160 |
+
if (c:=clean_phone_number(txt)):
|
161 |
+
results['Phone Number'].append(c)
|
162 |
elif lbl == 'email address' and EMAIL_REGEX.fullmatch(txt):
|
163 |
results['Email Address'].append(txt.lower())
|
164 |
+
elif lbl == 'website' and WEBSITE_REGEX.search(txt):
|
165 |
+
if (n:=normalize_website(txt)):
|
166 |
+
results['Website'].append(n)
|
167 |
+
elif lbl == 'address':
|
168 |
+
results['Address'].append(txt)
|
169 |
# Regex fallbacks
|
170 |
results['Email Address'] += extract_emails(full_text)
|
171 |
results['Website'] += extract_websites(full_text)
|
172 |
# Phone regex fallback
|
173 |
results['Phone Number'] += process_phone_numbers(full_text)
|
174 |
+
# QR code
|
175 |
+
if qr := scan_qr_code(img):
|
176 |
+
results['QR Code'].append(qr)
|
177 |
# Address fallback
|
178 |
if not results['Address']:
|
179 |
+
if addr := extract_address(ocr_texts):
|
180 |
+
results['Address'].append(addr)
|
181 |
+
# Deduplicate
|
182 |
deduplicate_data(results)
|
183 |
# Company fallback
|
184 |
if not results['Company Name']:
|
|
|
192 |
if not results['Person Name']:
|
193 |
for t in ocr_texts:
|
194 |
if re.match(r'^(?:[A-Z][a-z]+\s?){2,}$', t):
|
195 |
+
results['Person Name'].append(t)
|
196 |
+
break
|
197 |
+
# Build CSV map including all keys
|
198 |
+
csv_map = {k: '; '.join(v) for k,v in results.items()}
|
199 |
with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
|
200 |
pd.DataFrame([csv_map]).to_csv(f, index=False)
|
201 |
csv_path = f.name
|
202 |
+
return full_text, results, csv_path, ''
|
203 |
except Exception:
|
204 |
err = traceback.format_exc()
|
205 |
logger.error(f"Processing failed: {err}")
|
206 |
+
return '', {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}, None, f"Error:\n{err}"
|
207 |
|
208 |
# Gradio Interface
|
209 |
if __name__ == '__main__':
|
|
|
220 |
css=".gr-interface {max-width: 800px !important;}"
|
221 |
)
|
222 |
demo.launch()
|
|