File size: 9,075 Bytes
70b98b2
6bba885
70b98b2
 
 
fd45fbc
6bba885
fd45fbc
6bba885
 
 
 
fd45fbc
6bba885
fd45fbc
6bba885
 
24a8aeb
fd45fbc
 
 
 
 
 
 
 
 
 
 
21c5eee
fd45fbc
21c5eee
 
 
fd45fbc
 
 
 
 
 
 
 
 
 
 
21c5eee
 
 
 
fd45fbc
 
 
 
 
 
 
 
 
21c5eee
 
fd45fbc
21c5eee
fd45fbc
21c5eee
c66181c
 
fd45fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bba885
fd45fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c5eee
 
 
fd45fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c5eee
 
 
 
 
 
fd45fbc
21c5eee
 
fd45fbc
 
21c5eee
 
 
 
 
fd45fbc
 
 
 
 
21c5eee
 
 
fd45fbc
 
21c5eee
 
 
fd45fbc
 
 
 
 
 
 
 
 
 
 
 
 
21c5eee
 
 
 
c66181c
fd45fbc
c66181c
21c5eee
fd45fbc
 
 
21c5eee
1d25483
fd45fbc
c66181c
fd45fbc
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from paddleocr import PaddleOCR
from gliner import GLiNER
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
import tempfile
import pandas as pd
import re
import traceback
import zxingcpp  # QR decoding

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Environment setup
os.environ['GLINER_HOME'] = './gliner_models'

# Load GLiNER model
try:
    logger.info("Loading GLiNER model...")
    gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception:
    logger.exception("Failed to load GLiNER model")
    raise

# Regex patterns for emails and websites
EMAIL_REGEX = re.compile(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b")
WEBSITE_REGEX = re.compile(r"(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})")

# Phone number constants and regex for Saudi/UAE support
SAUDI_CODE = '+966'
UAE_CODE = '+971'
PHONE_REGEX = re.compile(r'^(?:\+9665\d{8}|\+9715\d{8}|05\d{8}|5\d{8})$')

# Utility functions
def extract_emails(text: str) -> list[str]:
    return [e.lower() for e in EMAIL_REGEX.findall(text)]

def extract_websites(text: str) -> list[str]:
    return [m.lower() for m in WEBSITE_REGEX.findall(text)]

def normalize_website(url: str) -> str | None:
    u = url.lower().replace('www.', '').split('/')[0]
    return f"www.{u}" if re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", u) else None

def clean_phone_number(phone: str) -> str | None:
    cleaned = re.sub(r"[^\d+]", "", phone)
    # International formats
    if cleaned.startswith(SAUDI_CODE + '5') and len(cleaned) == 12:
        return cleaned
    if cleaned.startswith(UAE_CODE + '5') and len(cleaned) == 12:
        return cleaned
    # Local to international
    if cleaned.startswith('05') and len(cleaned) == 10:
        # Determine country by leading digit after 0 (6 Saudi, 5 UAE)
        return (SAUDI_CODE if cleaned[1]=='5' and cleaned[1:2] == '5' else UAE_CODE) + cleaned[1:]
    if cleaned.startswith('5') and len(cleaned) == 9:
        return UAE_CODE + cleaned
    if cleaned.startswith('9665') and len(cleaned) == 12:
        return '+' + cleaned
    return None

def process_phone_numbers(text: str) -> list[str]:
    found = []
    for match in re.finditer(r'(?:\+?\d{8,13}|05\d{8})', text):
        raw = match.group().strip()
        if (c := clean_phone_number(raw)):
            found.append(c)
    return list(set(found))

def extract_address(ocr_texts: list[str]) -> str | None:
    keywords = ["block","street","ave","area","industrial","road"]
    parts = [t for t in ocr_texts if any(kw in t.lower() for kw in keywords)]
    return " ".join(parts) if parts else None

# QR scanning
def scan_qr_code(image: Image.Image) -> str | None:
    try:
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
            image.save(tmp, format="PNG")
            path = tmp.name
        img_cv = cv2.imread(path)
        # Direct decode
        try:
            res = zxingcpp.read_barcodes(img_cv)
            if res and res[0].text:
                return res[0].text.strip()
        except:
            logger.warning("Direct ZXing decode failed")
        # Fallback recolor
        default_color = (0, 0, 0)
        tol = 50
        pix = list(image.convert('RGB').getdata())
        new_pix = [default_color if all(abs(p[i]-default_color[i])<=tol for i in range(3)) else (255,255,255) for p in pix]
        img_conv = Image.new('RGB', image.size)
        img_conv.putdata(new_pix)
        cv2.imwrite(path + '_conv.png', cv2.cvtColor(np.array(img_conv), cv2.COLOR_RGB2BGR))
        res = zxingcpp.read_barcodes(cv2.imread(path + '_conv.png'))
        if res and res[0].text:
            return res[0].text.strip()
    except Exception:
        logger.exception("QR scan error")
    return None

# Deduplication
def deduplicate_data(results: dict[str, list[str]]) -> None:
    def clean_list(items, normalizer=lambda x: x):
        seen = set(); out = []
        for raw in items:
            for part in re.split(r'[;,]\s*', raw):
                p = part.strip()
                if not p: continue
                norm = normalizer(p)
                if norm and norm not in seen:
                    seen.add(norm); out.append(norm)
        return out
    # Normalize lists
    results['Email Address'] = clean_list(results.get('Email Address', []), lambda e: e.lower())
    results['Website'] = clean_list(results.get('Website', []), normalize_website)
    results['Phone Number'] = clean_list(results.get('Phone Number', []), clean_phone_number)
    # Others: simple dedupe
    for key in ['Person Name','Company Name','Job Title','Address','QR Code']:
        seen = set(); out = []
        for v in results.get(key, []):
            vv = v.strip()
            if vv and vv not in seen:
                seen.add(vv); out.append(vv)
        results[key] = out

# Inference pipeline
def inference(img: Image.Image, confidence: float):
    try:
        ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False,
                        det_model_dir='./models/det/en',
                        cls_model_dir='./models/cls/en',
                        rec_model_dir='./models/rec/en')
        arr = np.array(img)
        raw = ocr.ocr(arr, cls=True)[0]
        ocr_texts = [ln[1][0] for ln in raw]
        full_text = ' '.join(ocr_texts)

        labels = ['person name','company name','job title','phone number','email address','address','website']
        entities = gliner_model.predict_entities(full_text, labels, threshold=confidence, flat_ner=True)

        results = {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}
        # Entity processing
        for ent in entities:
            txt, lbl = ent['text'].strip(), ent['label'].lower()
            if lbl == 'person name':
                results['Person Name'].append(txt)
            elif lbl == 'company name':
                results['Company Name'].append(txt)
            elif lbl == 'job title':
                results['Job Title'].append(txt.title())
            elif lbl == 'phone number':
                if (c:=clean_phone_number(txt)):
                    results['Phone Number'].append(c)
            elif lbl == 'email address' and EMAIL_REGEX.fullmatch(txt):
                results['Email Address'].append(txt.lower())
            elif lbl == 'website' and WEBSITE_REGEX.search(txt):
                if (n:=normalize_website(txt)):
                    results['Website'].append(n)
            elif lbl == 'address':
                results['Address'].append(txt)
        # Regex fallbacks
        results['Email Address'] += extract_emails(full_text)
        results['Website'] += extract_websites(full_text)
        # Phone regex fallback
        results['Phone Number'] += process_phone_numbers(full_text)
        # QR code
        if qr := scan_qr_code(img):
            results['QR Code'].append(qr)
        # Address fallback
        if not results['Address']:
            if addr := extract_address(ocr_texts):
                results['Address'].append(addr)
        # Deduplicate
        deduplicate_data(results)
        # Company fallback
        if not results['Company Name']:
            if results['Email Address']:
                dom = results['Email Address'][0].split('@')[-1].split('.')[0]
                results['Company Name'].append(dom.title())
            elif results['Website']:
                dom = results['Website'][0].split('.')[1]
                results['Company Name'].append(dom.title())
        # Name fallback
        if not results['Person Name']:
            for t in ocr_texts:
                if re.match(r'^(?:[A-Z][a-z]+\s?){2,}$', t):
                    results['Person Name'].append(t)
                    break
        # Build CSV map including all keys
        csv_map = {k: '; '.join(v) for k,v in results.items()}
        with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
            pd.DataFrame([csv_map]).to_csv(f, index=False)
            csv_path = f.name
        return full_text, results, csv_path, ''
    except Exception:
        err = traceback.format_exc()
        logger.error(f"Processing failed: {err}")
        return '', {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}, None, f"Error:\n{err}"

# Gradio Interface
if __name__ == '__main__':
    demo = gr.Interface(
        inference,
        [gr.Image(type='pil', label='Upload Business Card'),
         gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
        [gr.Textbox(label="OCR Result"),
         gr.JSON(label="Structured Data"),
         gr.File(label="Download CSV"),
         gr.Textbox(label="Error Log")],
        title='Enhanced Business Card Parser',
        description='Accurate entity extraction with combined AI and regex validation (with Saudi/UAE support)',
        css=".gr-interface {max-width: 800px !important;}"
    )
    demo.launch()