File size: 13,549 Bytes
f91b361
 
0d2a648
142c273
 
f91b361
a22e188
142c273
f91b361
 
142c273
f91b361
 
142c273
f91b361
 
 
 
a22e188
f91b361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22e188
 
f91b361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22e188
 
 
 
 
f91b361
142c273
ad05a0d
 
 
 
 
 
 
 
 
 
 
 
2712a31
 
 
ad05a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b361
 
a22e188
f91b361
 
 
 
 
 
 
 
ad05a0d
 
 
 
f91b361
ad05a0d
f91b361
ad05a0d
a22e188
f91b361
 
0d2a648
 
f91b361
142c273
f91b361
 
 
 
a22e188
 
 
 
 
 
f91b361
 
 
 
 
 
 
 
 
 
 
 
a22e188
 
f91b361
 
 
a22e188
f91b361
 
 
 
ad05a0d
 
 
f91b361
 
a22e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad05a0d
 
 
 
 
 
 
 
 
a22e188
 
 
f91b361
a22e188
f91b361
a22e188
 
 
 
 
ad05a0d
 
 
 
f91b361
 
a22e188
 
 
 
 
 
 
 
f91b361
a22e188
f91b361
 
 
 
 
 
 
a22e188
 
 
 
 
 
f91b361
a22e188
 
 
 
 
 
 
ad05a0d
 
 
a22e188
 
ad05a0d
a22e188
 
ad05a0d
f91b361
 
ad05a0d
 
 
 
a22e188
ad05a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b361
0d2a648
 
 
ad05a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2a648
ad05a0d
 
 
 
 
 
 
 
 
 
0d2a648
ad05a0d
 
 
 
 
 
 
 
 
 
0d2a648
 
142c273
 
f91b361
ad05a0d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# setwd('~/Dropbox/ImageSeq/')

options(error = NULL)
library(shiny)
library(dplyr)
library(fields)  # For image.plot in heatMap
library(akima)   # For interpolation

# Load the data from sm.csv
sm <- read.csv("sm.csv")

# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))

# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))

# Heatmap function with optimal_point parameter
heatMap <- function(x, y, z,
                    main = "",
                    N, yaxt = NULL,
                    xlab = "",
                    ylab = "",
                    horizontal = FALSE,
                    useLog = "",
                    legend.width = 1,
                    ylim = NULL,
                    xlim = NULL,
                    zlim = NULL,
                    add.legend = TRUE,
                    legend.only = FALSE,
                    vline = NULL,
                    col_vline = "black",
                    hline = NULL,
                    col_hline = "black",
                    cex.lab = 2,
                    cex.main = 2,
                    myCol = NULL,
                    includeMarginals = FALSE,
                    marginalJitterSD_x = 0.01,
                    marginalJitterSD_y = 0.01,
                    openBrowser = FALSE,
                    optimal_point = NULL) {
  if (openBrowser) { browser() }
  s_ <- akima::interp(x = x, y = y, z = z,
                      xo = seq(min(x), max(x), length = N),
                      yo = seq(min(y), max(y), length = N),
                      duplicate = "mean")
  if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
  if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
  imageFxn <- if (add.legend) fields::image.plot else graphics::image
  if (!grepl(useLog, pattern = "z")) {
    imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
             cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
             legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
             zlim = zlim, legend.only = legend.only)
  } else {
    useLog <- gsub(useLog, pattern = "z", replace = "")
    zTicks <- summary(c(s_$z))
    ep_ <- 0.001
    zTicks[zTicks < ep_] <- ep_
    zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
    zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
    s_$z[s_$z < ep_] <- ep_
    imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
             axis.args = list(at = log(zTicks), labels = zTicks),
             main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
             log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
             horizontal = horizontal, col = myCol, legend.width = legend.width,
             zlim = zlim, legend.only = legend.only)
  }
  if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
  if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
  
  if (includeMarginals) {
    points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
           rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
    points(rep(xlim[1] * 1.1, length(x)),
           y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
  }
  
  # Add green star at optimal point if provided
  if (!is.null(optimal_point)) {
    points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
  }
}

##############################################################################
# IMPORTANT: Store the meaningful labels for metric in a named vector.
# The "name" is what is displayed to the user in the dropdown,
# while the "value" is the underlying column in the dataset.
##############################################################################
metric_choices <- c(
  "Mean AUTOC RATE Ratio"            = "AUTOC_rate_std_ratio_mean",
  "Mean AUTOC RATE"                  = "AUTOC_rate_mean",
  "Mean SD of AUTOC RATE"            = "AUTOC_rate_std_mean",
  "Mean AUTOC RATE Ratio with PC"    = "AUTOC_rate_std_ratio_mean_pc",
  "Mean AUTOC RATE with PC"          = "AUTOC_rate_mean_pc",
  "Mean SD of AUTOC RATE with PC"    = "AUTOC_rate_std_mean_pc",
  "Mean Variable Importance (Image 1)" = "MeanVImportHalf1",
  "Mean Variable Importance (Image 2)" = "MeanVImportHalf2",
  "Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1",
  "Mean RMSE"                        = "RMSE"
)

##############################################################################
# Helper function to retrieve the *label* from its code
##############################################################################
getMetricLabel <- function(metric_value) {
  # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
  # If it doesn't find a match, return the code itself.
  lbl <- names(metric_choices)[which(metric_choices == metric_value)]
  if (length(lbl) == 0) return(metric_value)
  lbl
}

# UI Definition
ui <- fluidPage(
  titlePanel("Multiscale Heatmap Explorer"),
  sidebarLayout(
    sidebarPanel(
      selectInput("application", "Application",
                  choices = unique(sm$application),
                  selected = unique(sm$application)[1]),
      selectInput("model", "Model",
                  choices = unique(sm$optimizeImageRep),
                  selected = "clip"),
      
      ########################################################################
      # Use our named vector 'metric_choices' directly in selectInput
      ########################################################################
      selectInput("metric", "Metric",
                  choices = metric_choices,
                  selected = "AUTOC_rate_std_ratio_mean"),
      
      checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
    ),
    mainPanel(
      plotOutput("heatmapPlot", height = "600px"),
      div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
    )
  )
)

# Server Definition
server <- function(input, output) {
  # Function to determine whether to maximize or minimize the metric
  get_better_direction <- function(metric) {
    #if (grepl("std|RMSE", metric)) "min" else "max"
    if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
  }
  
  # Reactive data processing
  filteredData <- reactive({
    df <- sm %>%
      filter(application == input$application,
             optimizeImageRep == input$model) %>%
      mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
                                        MaxImageDimsLeft,
                                        MaxImageDimsRight))
    if (nrow(df) == 0) return(NULL)
    df
  })
  
  # Reactive expression to compute interpolated data and optimal point
  interpolated_data <- reactive({
    data <- filteredData()
    if (is.null(data)) return(NULL)
    
    # Group data
    grouped_data <- data %>%
      group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
      summarise(
        mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
        se_metric   = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
        n           = n(),
        .groups     = "drop"
      )
    
    better_dir <- get_better_direction(input$metric)
    single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
    best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
      if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
      else min(single_scale_data$mean_metric, na.rm = TRUE)
    } else NA
    
    grouped_data <- grouped_data %>%
      mutate(improvement = if (better_dir == "max") {
        mean_metric - best_single_scale_metric
      } else {
        best_single_scale_metric - mean_metric
      })
    
    # Select z based on checkbox
    z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
    x <- grouped_data$MaxImageDimsLeft
    y <- grouped_data$MaxImageDimsRight
    
    # Check if interpolation is possible
    if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
      return(NULL)
    }
    
    # Compute interpolated grid
    s_ <- akima::interp(
      x = x, 
      y = y, 
      z = z_to_interpolate,
      xo = seq(min(x), max(x), length = 50),
      yo = seq(min(y), max(y), length = 50),
      duplicate = "mean"
    )
    
    # Find optimal point from interpolated grid
    max_idx <- if (input$compareToBest || better_dir == "max") {
      which.max(s_$z)
    } else {
      which.min(s_$z)
    }
    row_col <- arrayInd(max_idx, .dim = dim(s_$z))
    optimal_x <- s_$x[row_col[1,1]]
    optimal_y <- s_$y[row_col[1,2]]
    optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
    
    list(
      s_ = s_, 
      optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z)
    )
  })
  
  # Heatmap Output
  output$heatmapPlot <- renderPlot({
    interp_data <- interpolated_data()
    if (is.null(interp_data)) {
      plot.new()
      text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
      return(NULL)
    }
    
    data <- filteredData()
    grouped_data <- data %>%
      group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
      summarise(
        mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
        .groups = "drop"
      )
    
    better_dir <- get_better_direction(input$metric)
    single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
    best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
      if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
      else min(single_scale_data$mean_metric, na.rm = TRUE)
    } else NA
    
    grouped_data <- grouped_data %>%
      mutate(improvement = if (better_dir == "max") {
        mean_metric - best_single_scale_metric
      } else {
        best_single_scale_metric - mean_metric
      })
    
    # Retrieve the *label* for the chosen metric:
    chosen_metric_label <- getMetricLabel(input$metric)
    
    if (input$compareToBest) {
      z <- grouped_data$improvement
      main_title <- paste(input$application, "-", chosen_metric_label, "improvement over best single scale")
    } else {
      z <- grouped_data$mean_metric
      main_title <- paste(input$application, "-", chosen_metric_label)
    }
    
    x <- grouped_data$MaxImageDimsLeft
    y <- grouped_data$MaxImageDimsRight
    zlim <- range(z, na.rm = TRUE)
    
    customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
    heatMap(
      x = x,
      y = y,
      z = z,
      N = 50,
      main = main_title,
      xlab = "Image Dimension 1",
      ylab = "Image Dimension 2",
      useLog = "xy",
      myCol = customPalette,
      cex.lab = 1.4,
      zlim = zlim,
      optimal_point = interp_data$optimal_point
    )
  })
  
  # Contextual Note Output
  output$contextNote <- renderText({
    SharedContextText <- c(
      "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
      "The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
      "For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>", 
      "<div style='font-size: 10px; line-height: 1.5;'>",
      "<b>Glossary:</b><br>",
      "• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
      "• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
      "• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
      "• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
      "• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>",
      "• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
      "• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
      "• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
      "</div>"
    )
    
    chosen_metric_label <- getMetricLabel(input$metric)
    
    if (input$compareToBest) {
      c(
        paste(
          "This heatmap shows the improvement in",
          paste0("'", chosen_metric_label, "'"),
          "over the best single scale for",
          input$application, 
          "using the", input$model, "model. The green star marks the optimal point."
        ), 
        SharedContextText
      )
    } else {
      c(
        paste(
          "This heatmap displays",
          paste0("'", chosen_metric_label, "'"),
          "for", input$application, 
          "using the", input$model, 
          "model across different image dimension combinations. The green star marks the optimal point."
        ), 
        SharedContextText
      )
    }
  })
}

# Run the Shiny App
shinyApp(ui = ui, server = server)