Spaces:
Running
Running
Update app.R
Browse files
app.R
CHANGED
@@ -86,6 +86,35 @@ heatMap <- function(x, y, z,
|
|
86 |
}
|
87 |
}
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
# UI Definition
|
90 |
ui <- fluidPage(
|
91 |
titlePanel("Multiscale Heatmap Explorer"),
|
@@ -97,11 +126,14 @@ ui <- fluidPage(
|
|
97 |
selectInput("model", "Model",
|
98 |
choices = unique(sm$optimizeImageRep),
|
99 |
selected = "clip"),
|
|
|
|
|
|
|
|
|
100 |
selectInput("metric", "Metric",
|
101 |
-
choices =
|
102 |
-
"AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc",
|
103 |
-
"MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"),
|
104 |
selected = "AUTOC_rate_std_ratio_mean"),
|
|
|
105 |
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
|
106 |
),
|
107 |
mainPanel(
|
@@ -141,9 +173,9 @@ server <- function(input, output) {
|
|
141 |
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
|
142 |
summarise(
|
143 |
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
|
144 |
-
se_metric
|
145 |
-
n
|
146 |
-
.groups
|
147 |
)
|
148 |
|
149 |
better_dir <- get_better_direction(input$metric)
|
@@ -171,29 +203,30 @@ server <- function(input, output) {
|
|
171 |
}
|
172 |
|
173 |
# Compute interpolated grid
|
174 |
-
s_ <- akima::interp(
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
181 |
# Find optimal point from interpolated grid
|
182 |
max_idx <- if (input$compareToBest || better_dir == "max") {
|
183 |
which.max(s_$z)
|
184 |
} else {
|
185 |
which.min(s_$z)
|
186 |
}
|
187 |
-
|
188 |
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
|
189 |
optimal_x <- s_$x[row_col[1,1]]
|
190 |
optimal_y <- s_$y[row_col[1,2]]
|
191 |
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
|
192 |
|
193 |
-
list(
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
})
|
198 |
|
199 |
# Heatmap Output
|
@@ -227,79 +260,85 @@ server <- function(input, output) {
|
|
227 |
best_single_scale_metric - mean_metric
|
228 |
})
|
229 |
|
230 |
-
|
231 |
-
|
|
|
232 |
if (input$compareToBest) {
|
233 |
z <- grouped_data$improvement
|
234 |
-
|
235 |
-
#max_abs <- max(abs(z), na.rm = TRUE)
|
236 |
-
#zlim <- if (!is.na(max_abs)) c(-max_abs, max_abs) else NULL
|
237 |
-
zlim <- range(z, na.rm = TRUE)
|
238 |
} else {
|
239 |
z <- grouped_data$mean_metric
|
240 |
-
|
241 |
-
zlim <- range(z, na.rm = TRUE)
|
242 |
}
|
243 |
|
|
|
|
|
|
|
|
|
244 |
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
|
245 |
-
heatMap(
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
257 |
})
|
258 |
|
259 |
# Contextual Note Output
|
260 |
output$contextNote <- renderText({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
if (input$compareToBest) {
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
|
273 |
-
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
|
274 |
-
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
|
275 |
-
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
|
276 |
-
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
|
277 |
-
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
|
278 |
-
"</div>"
|
279 |
-
)
|
280 |
} else {
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
|
292 |
-
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
|
293 |
-
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
|
294 |
-
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
|
295 |
-
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
|
296 |
-
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
|
297 |
-
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
|
298 |
-
"</div>"
|
299 |
-
)
|
300 |
}
|
301 |
})
|
302 |
}
|
303 |
|
304 |
# Run the Shiny App
|
305 |
-
shinyApp(ui = ui, server = server)
|
|
|
|
86 |
}
|
87 |
}
|
88 |
|
89 |
+
##############################################################################
|
90 |
+
# IMPORTANT: Store the meaningful labels for metric in a named vector.
|
91 |
+
# The "name" is what is displayed to the user in the dropdown,
|
92 |
+
# while the "value" is the underlying column in the dataset.
|
93 |
+
##############################################################################
|
94 |
+
metric_choices <- c(
|
95 |
+
"Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean",
|
96 |
+
"Mean AUTOC RATE" = "AUTOC_rate_mean",
|
97 |
+
"Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean",
|
98 |
+
"Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
|
99 |
+
"Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
|
100 |
+
"Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
|
101 |
+
"Mean Variable Importance (Split 1)" = "MeanVImportHalf1",
|
102 |
+
"Mean Variable Importance (Split 2)" = "MeanVImportHalf2",
|
103 |
+
"Mean Fraction of Top k Features (Split 1)" = "FracTopkHalf1",
|
104 |
+
"Mean RMSE" = "RMSE"
|
105 |
+
)
|
106 |
+
|
107 |
+
##############################################################################
|
108 |
+
# Helper function to retrieve the *label* from its code
|
109 |
+
##############################################################################
|
110 |
+
getMetricLabel <- function(metric_value) {
|
111 |
+
# This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
|
112 |
+
# If it doesn't find a match, return the code itself.
|
113 |
+
lbl <- names(metric_choices)[which(metric_choices == metric_value)]
|
114 |
+
if (length(lbl) == 0) return(metric_value)
|
115 |
+
lbl
|
116 |
+
}
|
117 |
+
|
118 |
# UI Definition
|
119 |
ui <- fluidPage(
|
120 |
titlePanel("Multiscale Heatmap Explorer"),
|
|
|
126 |
selectInput("model", "Model",
|
127 |
choices = unique(sm$optimizeImageRep),
|
128 |
selected = "clip"),
|
129 |
+
|
130 |
+
########################################################################
|
131 |
+
# Use our named vector 'metric_choices' directly in selectInput
|
132 |
+
########################################################################
|
133 |
selectInput("metric", "Metric",
|
134 |
+
choices = metric_choices,
|
|
|
|
|
135 |
selected = "AUTOC_rate_std_ratio_mean"),
|
136 |
+
|
137 |
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
|
138 |
),
|
139 |
mainPanel(
|
|
|
173 |
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
|
174 |
summarise(
|
175 |
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
|
176 |
+
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
|
177 |
+
n = n(),
|
178 |
+
.groups = "drop"
|
179 |
)
|
180 |
|
181 |
better_dir <- get_better_direction(input$metric)
|
|
|
203 |
}
|
204 |
|
205 |
# Compute interpolated grid
|
206 |
+
s_ <- akima::interp(
|
207 |
+
x = x,
|
208 |
+
y = y,
|
209 |
+
z = z_to_interpolate,
|
210 |
+
xo = seq(min(x), max(x), length = 50),
|
211 |
+
yo = seq(min(y), max(y), length = 50),
|
212 |
+
duplicate = "mean"
|
213 |
+
)
|
214 |
+
|
215 |
# Find optimal point from interpolated grid
|
216 |
max_idx <- if (input$compareToBest || better_dir == "max") {
|
217 |
which.max(s_$z)
|
218 |
} else {
|
219 |
which.min(s_$z)
|
220 |
}
|
|
|
221 |
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
|
222 |
optimal_x <- s_$x[row_col[1,1]]
|
223 |
optimal_y <- s_$y[row_col[1,2]]
|
224 |
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
|
225 |
|
226 |
+
list(
|
227 |
+
s_ = s_,
|
228 |
+
optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z)
|
229 |
+
)
|
230 |
})
|
231 |
|
232 |
# Heatmap Output
|
|
|
260 |
best_single_scale_metric - mean_metric
|
261 |
})
|
262 |
|
263 |
+
# Retrieve the *label* for the chosen metric:
|
264 |
+
chosen_metric_label <- getMetricLabel(input$metric)
|
265 |
+
|
266 |
if (input$compareToBest) {
|
267 |
z <- grouped_data$improvement
|
268 |
+
main_title <- paste(input$application, "-", chosen_metric_label, "improvement over best single scale")
|
|
|
|
|
|
|
269 |
} else {
|
270 |
z <- grouped_data$mean_metric
|
271 |
+
main_title <- paste(input$application, "-", chosen_metric_label)
|
|
|
272 |
}
|
273 |
|
274 |
+
x <- grouped_data$MaxImageDimsLeft
|
275 |
+
y <- grouped_data$MaxImageDimsRight
|
276 |
+
zlim <- range(z, na.rm = TRUE)
|
277 |
+
|
278 |
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
|
279 |
+
heatMap(
|
280 |
+
x = x,
|
281 |
+
y = y,
|
282 |
+
z = z,
|
283 |
+
N = 50,
|
284 |
+
main = main_title,
|
285 |
+
xlab = "Image Dimension 1",
|
286 |
+
ylab = "Image Dimension 2",
|
287 |
+
useLog = "xy",
|
288 |
+
myCol = customPalette,
|
289 |
+
cex.lab = 1.4,
|
290 |
+
zlim = zlim,
|
291 |
+
optimal_point = interp_data$optimal_point
|
292 |
+
)
|
293 |
})
|
294 |
|
295 |
# Contextual Note Output
|
296 |
output$contextNote <- renderText({
|
297 |
+
SharedContextText <- c(
|
298 |
+
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
|
299 |
+
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
|
300 |
+
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
|
301 |
+
"<div style='font-size: 10px; line-height: 1.5;'>",
|
302 |
+
"<b>Glossary:</b><br>",
|
303 |
+
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
|
304 |
+
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
|
305 |
+
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
|
306 |
+
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
|
307 |
+
"• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>",
|
308 |
+
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
|
309 |
+
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
|
310 |
+
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
|
311 |
+
"</div>"
|
312 |
+
)
|
313 |
+
|
314 |
+
chosen_metric_label <- getMetricLabel(input$metric)
|
315 |
+
|
316 |
if (input$compareToBest) {
|
317 |
+
c(
|
318 |
+
paste(
|
319 |
+
"This heatmap shows the improvement in",
|
320 |
+
paste0("'", chosen_metric_label, "'"),
|
321 |
+
"over the best single scale for",
|
322 |
+
input$application,
|
323 |
+
"using the", input$model, "model. The green star marks the optimal point."
|
324 |
+
),
|
325 |
+
SharedContextText
|
326 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
} else {
|
328 |
+
c(
|
329 |
+
paste(
|
330 |
+
"This heatmap displays",
|
331 |
+
paste0("'", chosen_metric_label, "'"),
|
332 |
+
"for", input$application,
|
333 |
+
"using the", input$model,
|
334 |
+
"model across different image dimension combinations. The green star marks the optimal point."
|
335 |
+
),
|
336 |
+
SharedContextText
|
337 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
}
|
339 |
})
|
340 |
}
|
341 |
|
342 |
# Run the Shiny App
|
343 |
+
shinyApp(ui = ui, server = server)
|
344 |
+
|