Spaces:
Running
Running
Update app.R
Browse files
app.R
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# setwd('~/Dropbox/ImageSeq/')
|
2 |
|
|
|
3 |
library(shiny)
|
4 |
library(dplyr)
|
5 |
library(fields) # For image.plot in heatMap
|
@@ -104,7 +105,8 @@ ui <- fluidPage(
|
|
104 |
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
|
105 |
),
|
106 |
mainPanel(
|
107 |
-
plotOutput("heatmapPlot", height = "600px")
|
|
|
108 |
)
|
109 |
)
|
110 |
)
|
@@ -230,12 +232,13 @@ server <- function(input, output) {
|
|
230 |
if (input$compareToBest) {
|
231 |
z <- grouped_data$improvement
|
232 |
main <- paste(input$application, "-", input$metric, "improvement over best single scale")
|
233 |
-
max_abs <- max(abs(z), na.rm = TRUE)
|
234 |
-
zlim <- if (!is.na(max_abs)) c(-max_abs, max_abs) else NULL
|
|
|
235 |
} else {
|
236 |
z <- grouped_data$mean_metric
|
237 |
main <- paste(input$application, "-", input$metric)
|
238 |
-
zlim <- range(z, na.rm = TRUE)
|
239 |
}
|
240 |
|
241 |
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
|
@@ -245,13 +248,57 @@ server <- function(input, output) {
|
|
245 |
N = 50,
|
246 |
main = main,
|
247 |
xlab = "Image Dimension 1",
|
248 |
-
ylab = "Image
|
249 |
useLog = "xy",
|
250 |
myCol = customPalette,
|
251 |
cex.lab = 1.4,
|
252 |
zlim = zlim,
|
253 |
optimal_point = interp_data$optimal_point)
|
254 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
}
|
256 |
|
257 |
# Run the Shiny App
|
|
|
1 |
# setwd('~/Dropbox/ImageSeq/')
|
2 |
|
3 |
+
options(error = NULL)
|
4 |
library(shiny)
|
5 |
library(dplyr)
|
6 |
library(fields) # For image.plot in heatMap
|
|
|
105 |
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
|
106 |
),
|
107 |
mainPanel(
|
108 |
+
plotOutput("heatmapPlot", height = "600px"),
|
109 |
+
div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
|
110 |
)
|
111 |
)
|
112 |
)
|
|
|
232 |
if (input$compareToBest) {
|
233 |
z <- grouped_data$improvement
|
234 |
main <- paste(input$application, "-", input$metric, "improvement over best single scale")
|
235 |
+
#max_abs <- max(abs(z), na.rm = TRUE)
|
236 |
+
#zlim <- if (!is.na(max_abs)) c(-max_abs, max_abs) else NULL
|
237 |
+
zlim <- range(z, na.rm = TRUE)
|
238 |
} else {
|
239 |
z <- grouped_data$mean_metric
|
240 |
main <- paste(input$application, "-", input$metric)
|
241 |
+
zlim <- range(z, na.rm = TRUE)
|
242 |
}
|
243 |
|
244 |
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
|
|
|
248 |
N = 50,
|
249 |
main = main,
|
250 |
xlab = "Image Dimension 1",
|
251 |
+
ylab = "Image Dimension 2",
|
252 |
useLog = "xy",
|
253 |
myCol = customPalette,
|
254 |
cex.lab = 1.4,
|
255 |
zlim = zlim,
|
256 |
optimal_point = interp_data$optimal_point)
|
257 |
})
|
258 |
+
|
259 |
+
# Contextual Note Output
|
260 |
+
output$contextNote <- renderText({
|
261 |
+
if (input$compareToBest) {
|
262 |
+
paste("This heatmap shows the improvement in", input$metric,
|
263 |
+
"over the best single scale for", input$application,
|
264 |
+
"using the", input$model, "model. The green star marks the optimal point.",
|
265 |
+
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
|
266 |
+
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
|
267 |
+
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
|
268 |
+
"<div style='font-size: 10px; line-height: 1.5;'>",
|
269 |
+
"<b>Glossary:</b><br>",
|
270 |
+
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
|
271 |
+
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
|
272 |
+
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
|
273 |
+
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
|
274 |
+
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
|
275 |
+
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
|
276 |
+
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
|
277 |
+
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
|
278 |
+
"</div>"
|
279 |
+
)
|
280 |
+
} else {
|
281 |
+
paste("This heatmap displays", input$metric,
|
282 |
+
"for", input$application,
|
283 |
+
"using the", input$model,
|
284 |
+
"model across different image dimension combinations. The green star marks the optimal point.",
|
285 |
+
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
|
286 |
+
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
|
287 |
+
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
|
288 |
+
"<div style='font-size: 10px; line-height: 1.5;'>",
|
289 |
+
"<b>Glossary:</b><br>",
|
290 |
+
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
|
291 |
+
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
|
292 |
+
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
|
293 |
+
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
|
294 |
+
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
|
295 |
+
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
|
296 |
+
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
|
297 |
+
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
|
298 |
+
"</div>"
|
299 |
+
)
|
300 |
+
}
|
301 |
+
})
|
302 |
}
|
303 |
|
304 |
# Run the Shiny App
|