carlesabarca's picture
C贸digo inicial app.py
eedc2ca
raw
history blame
691 Bytes
import gradio as gr
from transformers import pipeline
# Cargar el modelo DistilBETO
sentiment_analysis = pipeline(
"sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment"
)
# Definir la funci贸n de an谩lisis de sentimientos
def analyze_sentiment(text):
results = sentiment_analysis(text)
return f"Label: {results[0]['label']}, Score: {results[0]['score']}"
# Configurar la interfaz de Gradio
demo = gr.Interface(
fn=analyze_sentiment,
inputs="text",
outputs="text",
title="An谩lisis de Sentimientos con DistilBETO",
description="Ingrese un texto en espa帽ol para analizar su sentimiento."
)
# Lanzar la aplicaci贸n
demo.launch()