bluenevus's picture
Update app.py
4f4519e verified
raw
history blame
7.15 kB
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
import google.generativeai as genai
import re
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
@spaces.GPU()
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = content or ""
if uploaded_file:
file_content = uploaded_file.read().decode('utf-8')
combined_content += "\n" + file_content if combined_content else file_content
prompt = f"""
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
{combined_content}
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration}.
"""
response = model.generate_content(prompt)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids,
attention_mask=attention_mask,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
return (24000, audio_samples) # Return sample rate and audio
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Create Gradio interface
with gr.Blocks(title="AI Podcaster") as demo:
with gr.Row():
with gr.Column(scale=1):
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
content = gr.Textbox(label="Content", lines=5)
uploaded_file = gr.File(label="Upload File")
duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
generate_script_btn = gr.Button("Generate Podcast Script")
with gr.Column(scale=2):
script_output = gr.Textbox(label="Generated Script", lines=10)
text_input = gr.Textbox(label="Text to speak", lines=5)
voice = gr.Dropdown(choices=["Narrator", "Male", "Female"], value="Narrator", label="Voice")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P")
with gr.Row():
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
max_new_tokens = gr.Slider(minimum=100, maximum=1000, value=500, step=50, label="Max New Tokens")
submit_btn = gr.Button("Generate Speech")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
audio_output = gr.Audio(label="Generated Speech", type="numpy")
# Set up event handlers
generate_script_btn.click(
fn=generate_podcast_script,
inputs=[gemini_api_key, content, uploaded_file, duration, num_hosts],
outputs=script_output
)
submit_btn.click(
fn=generate_speech,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None),
inputs=[],
outputs=[text_input, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)