bluenevus commited on
Commit
4f4519e
·
verified ·
1 Parent(s): e452575

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -132
app.py CHANGED
@@ -4,8 +4,13 @@ import torch
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  from huggingface_hub import snapshot_download
7
- from dotenv import load_dotenv
8
- load_dotenv()
 
 
 
 
 
9
 
10
  # Check if CUDA is available
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -16,49 +21,57 @@ snac_model = snac_model.to(device)
16
 
17
  model_name = "canopylabs/orpheus-3b-0.1-ft"
18
 
19
- # Download only model config and safetensors
20
- snapshot_download(
21
- repo_id=model_name,
22
- allow_patterns=[
23
- "config.json",
24
- "*.safetensors",
25
- "model.safetensors.index.json",
26
- ],
27
- ignore_patterns=[
28
- "optimizer.pt",
29
- "pytorch_model.bin",
30
- "training_args.bin",
31
- "scheduler.pt",
32
- "tokenizer.json",
33
- "tokenizer_config.json",
34
- "special_tokens_map.json",
35
- "vocab.json",
36
- "merges.txt",
37
- "tokenizer.*"
38
- ]
39
- )
40
-
41
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
42
  model.to(device)
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  print(f"Orpheus model loaded to {device}")
45
 
46
- # Process text prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  def process_prompt(prompt, voice, tokenizer, device):
48
  prompt = f"{voice}: {prompt}"
49
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
50
 
51
- start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
52
- end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
53
 
54
- modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
55
-
56
- # No padding needed for single input
57
  attention_mask = torch.ones_like(modified_input_ids)
58
 
59
  return modified_input_ids.to(device), attention_mask.to(device)
60
 
61
- # Parse output tokens to audio
62
  def parse_output(generated_ids):
63
  token_to_find = 128257
64
  token_to_remove = 128258
@@ -84,35 +97,8 @@ def parse_output(generated_ids):
84
  trimmed_row = [t - 128266 for t in trimmed_row]
85
  code_lists.append(trimmed_row)
86
 
87
- return code_lists[0] # Return just the first one for single sample
88
 
89
- # Redistribute codes for audio generation
90
- def redistribute_codes(code_list, snac_model):
91
- device = next(snac_model.parameters()).device # Get the device of SNAC model
92
-
93
- layer_1 = []
94
- layer_2 = []
95
- layer_3 = []
96
- for i in range((len(code_list)+1)//7):
97
- layer_1.append(code_list[7*i])
98
- layer_2.append(code_list[7*i+1]-4096)
99
- layer_3.append(code_list[7*i+2]-(2*4096))
100
- layer_3.append(code_list[7*i+3]-(3*4096))
101
- layer_2.append(code_list[7*i+4]-(4*4096))
102
- layer_3.append(code_list[7*i+5]-(5*4096))
103
- layer_3.append(code_list[7*i+6]-(6*4096))
104
-
105
- # Move tensors to the same device as the SNAC model
106
- codes = [
107
- torch.tensor(layer_1, device=device).unsqueeze(0),
108
- torch.tensor(layer_2, device=device).unsqueeze(0),
109
- torch.tensor(layer_3, device=device).unsqueeze(0)
110
- ]
111
-
112
- audio_hat = snac_model.decode(codes)
113
- return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
114
-
115
- # Main generation function
116
  @spaces.GPU()
117
  def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
118
  if not text.strip():
@@ -125,13 +111,13 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
125
  progress(0.3, "Generating speech tokens...")
126
  with torch.no_grad():
127
  generated_ids = model.generate(
128
- input_ids=input_ids,
129
  attention_mask=attention_mask,
130
- max_new_tokens=max_new_tokens,
131
  do_sample=True,
132
  temperature=temperature,
133
  top_p=top_p,
134
  repetition_penalty=repetition_penalty,
 
135
  num_return_sequences=1,
136
  eos_token_id=128258,
137
  )
@@ -147,87 +133,43 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
147
  print(f"Error generating speech: {e}")
148
  return None
149
 
150
- # Examples for the UI
151
- examples = [
152
- ["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
153
- ["I've also been taught to understand and produce paralinguistic things <sigh> like sighing, or <laugh> laughing, or <yawn> yawning!", "dan", 0.7, 0.95, 1.1, 1200],
154
- ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... <gasp> well, lets just say a lot of parameters.", "leah", 0.6, 0.9, 1.2, 1200],
155
- ["Sometimes when I talk too much, I need to <cough> excuse myself. <sniffle> The weather has been quite cold lately.", "leo", 0.65, 0.9, 1.1, 1200],
156
- ["Public speaking can be challenging. <groan> But with enough practice, anyone can become better at it.", "jess", 0.7, 0.95, 1.1, 1200],
157
- ["The hike was exhausting but the view from the top was absolutely breathtaking! <sigh> It was totally worth it.", "mia", 0.65, 0.9, 1.15, 1200],
158
- ["Did you hear that joke? <laugh> I couldn't stop laughing when I first heard it. <chuckle> It's still funny.", "zac", 0.7, 0.95, 1.1, 1200],
159
- ["After running the marathon, I was so tired <yawn> and needed a long rest. <sigh> But I felt accomplished.", "zoe", 0.6, 0.95, 1.1, 1200]
160
- ]
161
-
162
- # Available voices
163
- VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
164
-
165
- # Available Emotive Tags
166
- EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
167
-
168
  # Create Gradio interface
169
- with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
170
- gr.Markdown(f"""
171
- # 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
172
- Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
173
-
174
- ## Tips for better prompts:
175
- - Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
176
- - Longer text prompts generally work better than very short phrases
177
- - Increasing `repetition_penalty` and `temperature` makes the model speak faster.
178
- """)
179
  with gr.Row():
180
- with gr.Column(scale=3):
181
- text_input = gr.Textbox(
182
- label="Text to speak",
183
- placeholder="Enter your text here...",
184
- lines=5
185
- )
186
- voice = gr.Dropdown(
187
- choices=VOICES,
188
- value="tara",
189
- label="Voice"
190
- )
 
191
 
192
- with gr.Accordion("Advanced Settings", open=False):
193
- temperature = gr.Slider(
194
- minimum=0.1, maximum=1.5, value=0.6, step=0.05,
195
- label="Temperature",
196
- info="Higher values (0.7-1.0) create more expressive but less stable speech"
197
- )
198
- top_p = gr.Slider(
199
- minimum=0.1, maximum=1.0, value=0.95, step=0.05,
200
- label="Top P",
201
- info="Nucleus sampling threshold"
202
- )
203
- repetition_penalty = gr.Slider(
204
- minimum=1.0, maximum=2.0, value=1.1, step=0.05,
205
- label="Repetition Penalty",
206
- info="Higher values discourage repetitive patterns"
207
- )
208
- max_new_tokens = gr.Slider(
209
- minimum=100, maximum=2000, value=1200, step=100,
210
- label="Max Length",
211
- info="Maximum length of generated audio (in tokens)"
212
- )
213
 
214
  with gr.Row():
215
- submit_btn = gr.Button("Generate Speech", variant="primary")
216
- clear_btn = gr.Button("Clear")
 
 
 
217
 
218
  with gr.Column(scale=2):
219
  audio_output = gr.Audio(label="Generated Speech", type="numpy")
220
 
221
- # Set up examples
222
- gr.Examples(
223
- examples=examples,
224
- inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
225
- outputs=audio_output,
226
- fn=generate_speech,
227
- cache_examples=True,
228
  )
229
 
230
- # Set up event handlers
231
  submit_btn.click(
232
  fn=generate_speech,
233
  inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
@@ -242,4 +184,4 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
242
 
243
  # Launch the app
244
  if __name__ == "__main__":
245
- demo.queue().launch(share=False, ssr_mode=False)
 
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  from huggingface_hub import snapshot_download
7
+ import google.generativeai as genai
8
+ import re
9
+ import logging
10
+
11
+ # Set up logging
12
+ logging.basicConfig(level=logging.INFO)
13
+ logger = logging.getLogger(__name__)
14
 
15
  # Check if CUDA is available
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
21
 
22
  model_name = "canopylabs/orpheus-3b-0.1-ft"
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
25
  model.to(device)
26
  tokenizer = AutoTokenizer.from_pretrained(model_name)
27
  print(f"Orpheus model loaded to {device}")
28
 
29
+ @spaces.GPU()
30
+ def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
31
+ try:
32
+ genai.configure(api_key=api_key)
33
+ model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
34
+
35
+ combined_content = content or ""
36
+ if uploaded_file:
37
+ file_content = uploaded_file.read().decode('utf-8')
38
+ combined_content += "\n" + file_content if combined_content else file_content
39
+
40
+ prompt = f"""
41
+ Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
42
+ {combined_content}
43
+
44
+ Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
45
+ Use speech fillers like um, ah. Vary emotional tone.
46
+
47
+ Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
48
+ Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
49
+
50
+ Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
51
+
52
+ Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
53
+
54
+ Ensure content flows naturally and stays on topic. Match the script length to {duration}.
55
+ """
56
+
57
+ response = model.generate_content(prompt)
58
+ return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
59
+ except Exception as e:
60
+ logger.error(f"Error generating podcast script: {str(e)}")
61
+ raise
62
+
63
  def process_prompt(prompt, voice, tokenizer, device):
64
  prompt = f"{voice}: {prompt}"
65
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
66
 
67
+ start_token = torch.tensor([[128259]], dtype=torch.int64)
68
+ end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
69
 
70
+ modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
 
 
71
  attention_mask = torch.ones_like(modified_input_ids)
72
 
73
  return modified_input_ids.to(device), attention_mask.to(device)
74
 
 
75
  def parse_output(generated_ids):
76
  token_to_find = 128257
77
  token_to_remove = 128258
 
97
  trimmed_row = [t - 128266 for t in trimmed_row]
98
  code_lists.append(trimmed_row)
99
 
100
+ return code_lists[0]
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  @spaces.GPU()
103
  def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
104
  if not text.strip():
 
111
  progress(0.3, "Generating speech tokens...")
112
  with torch.no_grad():
113
  generated_ids = model.generate(
114
+ input_ids,
115
  attention_mask=attention_mask,
 
116
  do_sample=True,
117
  temperature=temperature,
118
  top_p=top_p,
119
  repetition_penalty=repetition_penalty,
120
+ max_new_tokens=max_new_tokens,
121
  num_return_sequences=1,
122
  eos_token_id=128258,
123
  )
 
133
  print(f"Error generating speech: {e}")
134
  return None
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  # Create Gradio interface
137
+ with gr.Blocks(title="AI Podcaster") as demo:
 
 
 
 
 
 
 
 
 
138
  with gr.Row():
139
+ with gr.Column(scale=1):
140
+ gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
141
+ content = gr.Textbox(label="Content", lines=5)
142
+ uploaded_file = gr.File(label="Upload File")
143
+ duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
144
+ num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
145
+ generate_script_btn = gr.Button("Generate Podcast Script")
146
+
147
+ with gr.Column(scale=2):
148
+ script_output = gr.Textbox(label="Generated Script", lines=10)
149
+ text_input = gr.Textbox(label="Text to speak", lines=5)
150
+ voice = gr.Dropdown(choices=["Narrator", "Male", "Female"], value="Narrator", label="Voice")
151
 
152
+ with gr.Row():
153
+ temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
154
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  with gr.Row():
157
+ repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
158
+ max_new_tokens = gr.Slider(minimum=100, maximum=1000, value=500, step=50, label="Max New Tokens")
159
+
160
+ submit_btn = gr.Button("Generate Speech")
161
+ clear_btn = gr.Button("Clear")
162
 
163
  with gr.Column(scale=2):
164
  audio_output = gr.Audio(label="Generated Speech", type="numpy")
165
 
166
+ # Set up event handlers
167
+ generate_script_btn.click(
168
+ fn=generate_podcast_script,
169
+ inputs=[gemini_api_key, content, uploaded_file, duration, num_hosts],
170
+ outputs=script_output
 
 
171
  )
172
 
 
173
  submit_btn.click(
174
  fn=generate_speech,
175
  inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
 
184
 
185
  # Launch the app
186
  if __name__ == "__main__":
187
+ demo.queue().launch(share=False, ssr_mode=False)