File size: 7,149 Bytes
a26f93a
b35040f
 
 
 
 
4f4519e
 
 
 
 
 
 
b35040f
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
4f4519e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
 
 
4f4519e
 
b35040f
4f4519e
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f4519e
b35040f
ec99653
b35040f
 
 
 
 
 
 
 
 
ec99653
 
4f4519e
ec99653
 
 
 
 
4f4519e
ec99653
 
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
4f4519e
b35040f
4f4519e
 
 
 
 
 
 
 
 
 
 
 
b35040f
4f4519e
 
 
b35040f
 
4f4519e
 
 
 
 
b35040f
 
 
 
4f4519e
 
 
 
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f4519e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
import google.generativeai as genai
import re
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "canopylabs/orpheus-3b-0.1-ft"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

@spaces.GPU()
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
        
        combined_content = content or ""
        if uploaded_file:
            file_content = uploaded_file.read().decode('utf-8')
            combined_content += "\n" + file_content if combined_content else file_content
        
        prompt = f"""
        Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
        {combined_content}
        
        Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
        Use speech fillers like um, ah. Vary emotional tone.
        
        Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
        Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
        
        Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
        
        Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
        
        Ensure content flows naturally and stays on topic. Match the script length to {duration}.
        """
        
        response = model.generate_content(prompt)
        return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
    except Exception as e:
        logger.error(f"Error generating podcast script: {str(e)}")
        raise

def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[128259]], dtype=torch.int64)
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]

@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    
    try:
        progress(0.1, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        
        progress(0.3, "Generating speech tokens...")
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                max_new_tokens=max_new_tokens,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        
        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)
        
        progress(0.8, "Converting to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        
        return (24000, audio_samples)  # Return sample rate and audio
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# Create Gradio interface
with gr.Blocks(title="AI Podcaster") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
            content = gr.Textbox(label="Content", lines=5)
            uploaded_file = gr.File(label="Upload File")
            duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
            num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
            generate_script_btn = gr.Button("Generate Podcast Script")

        with gr.Column(scale=2):
            script_output = gr.Textbox(label="Generated Script", lines=10)
            text_input = gr.Textbox(label="Text to speak", lines=5)
            voice = gr.Dropdown(choices=["Narrator", "Male", "Female"], value="Narrator", label="Voice")
            
            with gr.Row():
                temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P")
            
            with gr.Row():
                repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
                max_new_tokens = gr.Slider(minimum=100, maximum=1000, value=500, step=50, label="Max New Tokens")
            
            submit_btn = gr.Button("Generate Speech")
            clear_btn = gr.Button("Clear")
                
        with gr.Column(scale=2):
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
            
    # Set up event handlers
    generate_script_btn.click(
        fn=generate_podcast_script,
        inputs=[gemini_api_key, content, uploaded_file, duration, num_hosts],
        outputs=script_output
    )
    
    submit_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output
    )
    
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=[],
        outputs=[text_input, audio_output]
    )

# Launch the app
if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)